精英家教网 > 高中数学 > 题目详情
10.已知正方形ABCD的边长为1,以顶点A为起点,其余顶点为终点的向量记为$\overrightarrow{{a}_{i}}$(i=1,2,3),则|$\overrightarrow{{a}_{i}}$+$\overrightarrow{{a}_{j}}$|(i,j=1,2,3,i≠j)的最大值是$\sqrt{5}$,以C为顶点,其余顶点为终点的向量记为$\overrightarrow{{b}_{m}}$(m=1,2,3),若t=($\overrightarrow{{a}_{i}}+\overrightarrow{{a}_{j}}$)$•(\overrightarrow{{b}_{m}}+\overrightarrow{{b}_{n}})$,其中i,j,m,n均属于集合{1,2,3},且i≠j,m≠n,则t的最小值为-5.

分析 如图建立直角坐标系.不妨记以A为起点,其余顶点为终点的向量为$\overrightarrow{{a}_{i}}$(i=1,2,3),分别为$\overrightarrow{AB},\overrightarrow{AC},\overrightarrow{AD}$,以C为起点,其余顶点为终点的向量为$\overrightarrow{{b}_{m}}$(m=1,2,3),分别为$\overrightarrow{CD},\overrightarrow{CA},\overrightarrow{CB}$.再分类讨论当i,j,m,n取不同的值时,利用向量的坐标运算计算|$\overrightarrow{{a}_{i}}$+$\overrightarrow{{a}_{j}}$|的最大值和($\overrightarrow{{a}_{i}}+\overrightarrow{{a}_{j}}$)$•(\overrightarrow{{b}_{m}}+\overrightarrow{{b}_{n}})$最小值.

解答 解:不妨记以A为起点,其余顶点为终点的向量为其余顶点为终点的向量为$\overrightarrow{{a}_{i}}$(i=1,2,3),分别为$\overrightarrow{AB},\overrightarrow{AC},\overrightarrow{AD}$,
以C为起点,其余顶点为终点的向量为$\overrightarrow{{b}_{m}}$(m=1,2,3),分别为$\overrightarrow{CD},\overrightarrow{CA},\overrightarrow{CB}$.如图建立坐标系.

(1)当i=1,j=2,m=1,n=2时,则$\overrightarrow{{a}_{i}}$+$\overrightarrow{{a}_{j}}$=(1,0)+(1,1)=(2,1),|$\overrightarrow{{a}_{i}}$+$\overrightarrow{{a}_{j}}$|=$\sqrt{5}$;
($\overrightarrow{{a}_{i}}+\overrightarrow{{a}_{j}}$)$•(\overrightarrow{{b}_{m}}+\overrightarrow{{b}_{n}})$=[(1,0)+(1,1)]•[((-1,0)+(-1,-1)]=-5;
(2)当i=1,j=2,m=1,n=3时,则($\overrightarrow{{a}_{i}}+\overrightarrow{{a}_{j}}$)$•(\overrightarrow{{b}_{m}}+\overrightarrow{{b}_{n}})$=[(1,0)+(1,1)]•[((-1,0)+(0,-1)]=-3;
(3)当i=1,j=2,m=2,n=3时,则($\overrightarrow{{a}_{i}}+\overrightarrow{{a}_{j}}$)$•(\overrightarrow{{b}_{m}}+\overrightarrow{{b}_{n}})$=[(1,0)+(1,1)]•[((-1,-1)+(0,-1)]=-4;
(4)当i=1,j=3,m=1,n=2时,则$\overrightarrow{{a}_{i}}$+$\overrightarrow{{a}_{j}}$=((1,0)+(0,1)=(1,1),|$\overrightarrow{{a}_{i}}$+$\overrightarrow{{a}_{j}}$|=$\sqrt{2}$;
($\overrightarrow{{a}_{i}}+\overrightarrow{{a}_{j}}$)$•(\overrightarrow{{b}_{m}}+\overrightarrow{{b}_{n}})$=[(1,0)+(0,1)]•[((-1,0)+(-1,-1)]=-3;
同样地,当i,j,m,n取其它值时,|$\overrightarrow{{a}_{i}}$+$\overrightarrow{{a}_{j}}$|=$\sqrt{5}$,$\sqrt{2}$,($\overrightarrow{{a}_{i}}+\overrightarrow{{a}_{j}}$)$•(\overrightarrow{{b}_{m}}+\overrightarrow{{b}_{n}})$=-5,-4,或-3.
则|$\overrightarrow{{a}_{i}}$+$\overrightarrow{{a}_{j}}$|最大值为$\sqrt{5}$;($\overrightarrow{{a}_{i}}+\overrightarrow{{a}_{j}}$)$•(\overrightarrow{{b}_{m}}+\overrightarrow{{b}_{n}})$的最小值是-5.
故答案为:$\sqrt{5}$;-5.

点评 本小题主要考查平面向量坐标表示、平面向量数量积的运算等基本知识,考查考查分类讨论、化归以及数形结合等数学思想方法,考查分析问题、解决问题的能

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知f(x)=$\frac{{{{log}_2}x-1}}{{2{{log}_2}x+1}}$(x>2),已知f(x1)+f(2x2)=$\frac{1}{2}$,则f(x1x2)的最小值=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若cos(α-β)cosβ-sin(α-β)sinβ=-m,且α为第三象限,则sinα的值(  )
A.-$\sqrt{1-{m}^{2}}$B.$\sqrt{1-{m}^{2}}$C.$\sqrt{{m}^{2}-1}$D.-$\sqrt{{m}^{2}-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设命题p:函数f(x)=lg(x2+ax+1)的定义域为R;命题q:函数f(x)=x2-2ax-1在(-∞,-1]上单调递减.
(1)若命题“p∨q”为真,“p∧q”为假,求实数a的取值范围;
(2)若关于x的不等式(x-m)(x-m+5)<0(m∈R)的解集为M;命题p为真命题时,a的取值集合为N.当M∪N=M时,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在约束条件$\left\{\begin{array}{l}{x+2y≤4}\\{x-y≤1}\\{x+2≥0}\end{array}\right.$下,函数z=3x-y的最小值是(  )
A.9B.5C.-5D.-9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.复数z=-2+2i,则$\overline{z}$的虚部为(  )
A.2iB.-2iC.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,函数y=f(x)是可导函数,曲线y=f(x)过点(2,3),且在x=2处的切线l在y轴上的截距为2,令g(x)=xf(x),则曲线y=g(x)在x=2处的切线方程是4x-y-2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知实数x,y满足$\left\{\begin{array}{l}{x≥0,y≥0}\\{x+2y≤8}\\{3x+y≤9}\end{array}\right.$,则z=2x+3y的最大值是13.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.甲有三本不同的书,乙去借阅,且至少借1本,则不同借法的总数为(  )
A.3B.6C.7D.9

查看答案和解析>>

同步练习册答案