精英家教网 > 高中数学 > 题目详情
19.已知实数x,y满足$\left\{\begin{array}{l}{x≥0,y≥0}\\{x+2y≤8}\\{3x+y≤9}\end{array}\right.$,则z=2x+3y的最大值是13.

分析 作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.

解答 解:作出不等式对应的平面区域(阴影部分),
由z=2x+3y,得y=$-\frac{2}{3}x+\frac{z}{3}$,
平移直线y=$-\frac{2}{3}x+\frac{z}{3}$,由图象可知当直线y=$-\frac{2}{3}x+\frac{z}{3}$经过点B时,
直线y=$-\frac{2}{3}x+\frac{z}{3}$的截距最大,此时z最大.
由$\left\{\begin{array}{l}{x+2y=8}\\{3x+y=9}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$,
即B(2,3).
此时z的最大值为z=2×2+3×3=13,
故答案为:13.

点评 本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.在空间直角坐标中,已知A(2,1,0)B(4,3,2),则AB两点间的距离为2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知正方形ABCD的边长为1,以顶点A为起点,其余顶点为终点的向量记为$\overrightarrow{{a}_{i}}$(i=1,2,3),则|$\overrightarrow{{a}_{i}}$+$\overrightarrow{{a}_{j}}$|(i,j=1,2,3,i≠j)的最大值是$\sqrt{5}$,以C为顶点,其余顶点为终点的向量记为$\overrightarrow{{b}_{m}}$(m=1,2,3),若t=($\overrightarrow{{a}_{i}}+\overrightarrow{{a}_{j}}$)$•(\overrightarrow{{b}_{m}}+\overrightarrow{{b}_{n}})$,其中i,j,m,n均属于集合{1,2,3},且i≠j,m≠n,则t的最小值为-5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.甲、乙、丙三位同学商量高考后外出旅游,甲提议去古都西安,乙提议去海上花园厦门,丙表示随意.最终,三人商定以抛硬币的方式决定结果.规则是:由丙抛掷硬币若干次,若正面朝上,则甲得一分、乙得零分;若反面朝上,则乙得一分、甲得零分,先得4分者获胜.三人均执行胜者的提议.若记所需抛掷硬币的次数为X.
(1)求X=6的概率;
(2)求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知集合A={-1,1,3},B={x|x<3},则A∩B={-1,1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设f(x)=asin(πx+α)+bcos(πx+β)+4,其中a,b,α,β均为非零的常数,若f(1988)=3,则f(2015)的值为(  )
A.1B.3C.5D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=$\left\{\begin{array}{l}{x-5,x≥6}\\{f(x+2),x<6}\end{array}\right.$则f(5)等于(  )
A.2B.3C.4D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=cosx-sinx,f′(x)为函数f(x)的导函数,那么$f'(\frac{π}{6})$等于(  )
A.$\frac{{1-\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}-1}}{2}$C.$-\frac{{1+\sqrt{3}}}{2}$D.$\frac{{1+\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=2sin($\frac{1}{3}$x-$\frac{π}{6}$),x∈R
(1)求$f({\frac{5π}{4}})$的值;
(2)设0≤β≤$\frac{π}{2}$≤α≤π,$f({3α+\frac{π}{2}})=\frac{10}{13}$,f(3β+2π)=$\frac{6}{5}$,求cos(α+β)的值.

查看答案和解析>>

同步练习册答案