精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=$\frac{1}{2}a{x^2}$-lnx,a∈R.
(I)当a=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(II)讨论f(x)的单调性.

分析 (I)求出a=2的函数的导数,求得切线的斜率和切点,由点斜式方程,即可得到所求切线方程;
(II)求得函数的导数,讨论(i)若a≤0,(ii)若a>0,令导数大于0,可得增区间,令导数小于0,可得减区间.

解答 解:(I)当a=2时,f(x)=x2-lnx,
$f'(x)=2x-\frac{1}{x}=\frac{{2{x^2}-1}}{x}$.
则f′(1)=1,f(1)=1,
曲线y=f(x)在点(1,f(1))处的切线方程为l:y-f(1)=f'(1)(x-1),
所以切线方程为l:x-y=0;
(II)函数f(x)的定义域为(0,+∞).
$f'(x)=ax-\frac{1}{x}=\frac{{a{x^2}-1}}{x}$.
(i)若a≤0,f′(x)<0恒成立,则f(x)在(0,+∞)上单调递减.
(ii)若a>0,令f′(x)=0,则$x=\sqrt{\frac{1}{a}}$.
当x变化时,f′(x)与f(x)的变化情况如下表:

x$(0,\sqrt{\frac{1}{a}})$$\sqrt{\frac{1}{a}}$$(\sqrt{\frac{1}{a}},+∞)$
f′(x)-0+
f(x)极小值
所以f(x)在$(0,\frac{{\sqrt{a}}}{a})$上单调递减,在$(\frac{{\sqrt{a}}}{a},+∞)$上单调递增.

点评 本题考查导数的运用:求切线方程和单调区间,掌握分类讨论的思想方法是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.在约束条件$\left\{\begin{array}{l}{x+2y≤4}\\{x-y≤1}\\{x+2≥0}\end{array}\right.$下,函数z=3x-y的最小值是(  )
A.9B.5C.-5D.-9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知向量$\overrightarrow{a}$=($\sqrt{3}$sinx,cosx),$\overrightarrow{b}$=(cosx,cosx),函数f(x)=2$\overrightarrow{a}$•$\overrightarrow{b}$-1
(1)求f(x)的单调递增区间;
(2)当x∈[$\frac{π}{6}$,$\frac{π}{2}$]时,若f(x)=1,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.对于函数y=f(x),当x∈(0,+∞)时,总有f(x)<xf′(x),若m>n>0,则下列不等式中,恒成立的是(  )
A.$\frac{f(m)}{n}$<$\frac{f(n)}{m}$B.$\frac{f(m)}{m}$<$\frac{f(n)}{n}$C.$\frac{f(m)}{n}$>$\frac{3f(n)}{m}$D.$\frac{f(m)}{m}$>$\frac{f(n)}{n}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设a,b∈R,则“a>b>1”是“a-b<a2-b2”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.甲有三本不同的书,乙去借阅,且至少借1本,则不同借法的总数为(  )
A.3B.6C.7D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=cos(ωx+θ)为奇函数(0<θ<π),其图象与直线y=1的某两个交点的横坐标分别为x1、x2,且|x2-x1|的最小值为π,则(  )
A.$ω=2,θ=\frac{π}{2}$B.$ω=\frac{1}{2},θ=\frac{π}{2}$C.$ω=\frac{1}{2},θ=\frac{π}{4}$D.$ω=2,θ=\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设定义在R上的奇函数f(x)在区间(0,+∞)上单调递增,则不等式f(x-1)<0的解集是(  )
A.(-∞,1)B.(1,+∞)C.(0,+∞)D.(-∞,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.204与85的最大公约数是17.

查看答案和解析>>

同步练习册答案