精英家教网 > 高中数学 > 题目详情

已知函数f(x)=是奇函数.

(1)求实数m的值;

(2)若函数f(x)在区间[-1,a-2]上单调递增,求实数a的取值范围.

 

【答案】

解:(1) m=2  

(2)实数a的取值范围是(1,3]    

【解析】本试题主要是考查了分段函数的奇偶性问题和函数与不等式的关系的运用。

(1)设x<0,则-x>0,所以f(-x)=-(-x)2+2(-x)=-x2-2x,

又f(x)为奇函数,所以f(-x)=-f(x),于是x<0时,f(x)=x2+2x=x2+mx

(2)要使f(x)在[-1,a-2]上单调递增,

结合f(x)的图象知a-2>-1,a-21,从而得到参数a的范围

 

练习册系列答案
相关习题

科目:高中数学 来源:2012年人教A版高中数学必修1单调性与最大(小)值练习卷(二)(解析版) 题型:选择题

(2009广西北海一检,文10)已知函数f(x)=是(-∞,+∞)上的减函数,那么a的取值范围是(  )

A.(0,3)                          B.(0,3]

C.(0,2)                          D.(0,2]

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省高三下学期开学质量检测数学试卷 题型:解答题

(本小题满分16分)已知函数f(x)=是定义在R上的奇函数,其值域为.

(1) 试求a、b的值;

(2) 函数y=g(x)(x∈R)满足:

条件1: 当x∈[0,3)时,g(x)=f(x);条件2: g(x+3)=g(x)lnm(m≠1).

① 求函数g(x)在x∈[3,9)上的解析式;

② 若函数g(x)在x∈[0,+∞)上的值域是闭区间,试探求m的取值范围,并说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2012届度辽宁省沈阳市高三数学质量检测试卷 题型:解答题

已知函数f(x)=是定义在(-1,1)上的奇函数,且f()=.

 

(1)求函数f(x)的解析式;

(2)用定义证明f(x)在(-1,1)上是增函数;

(3)解不等式f(t-1)+f(t)<0.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=是奇函数.

(1)求实数m的值;

(2)若函数f(x)在区间[-1,a-2]上单调递增,求实数a的取值范围.

查看答案和解析>>

同步练习册答案