精英家教网 > 高中数学 > 题目详情

【题目】在四棱锥P﹣ABCD中,底面ABCD是边长为2的菱形,∠BAD=60°,PD⊥底面ABCD,点M、N分别是棱AB、CD的中点.
(1)证明:BN⊥平面PCD;
(2)在线段PC上是否存在点H,使得MH与平面PCD所成最大角的正切值为 ,若存在,请求出H点的位置;若不存在,请说明理由.

【答案】
(1)证明:连接BD,

∵四边形ABCD为菱形,∠BCD=∠BAD=60°

∴△BCD为正三角形,∵N为CD中点,所以BN⊥CD

∵PD⊥平面ABCD,BN平面ABCD,∴PD⊥BN,.

又PD平面PCD,CD平面PCD,CD∩PD=D,∴BN⊥平面PCD


(2)解:假设线段PC上存在一点H,连接MH,DH,MD,

MBDN为平行四边形,∴MD∥BN,

由(1)BN⊥平面PCD∴MD⊥平面PCD,∴∠MHD为MH与平面PCD所成的角

在直角三角形MDH中, ,当DH最小,即DH⊥PC时,∠DHM最大,

在Rt△DHC中 ,∴

∴线段PC上存在点H,当 时,使MH与平面PCD所成最大角的正切值为


【解析】(1)连接BD,证明:BN⊥CD,PD⊥BN,即可证明BN⊥平面PCD;(2)假设线段PC上存在一点H,连接MH,DH,MD,可得∠MHD为MH与平面PCD所成的角,在直角三角形MDH中, ,当DH最小,即DH⊥PC时,∠DHM最大,利用条件求出CH,即可得出结论.
【考点精析】解答此题的关键在于理解直线与平面垂直的判定的相关知识,掌握一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想,以及对空间角的异面直线所成的角的理解,了解已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,则

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lg (a>0)为奇函数,函数g(x)= +b(b∈R).
(Ⅰ)求a;
(Ⅱ)若b>1,讨论方徎g(x)=ln|x|实数根的个数;
(Ⅲ)当x∈[ ]时,关于x的不等式f(1﹣x)≤log(x)有解,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,(x>0且a≠1)的图象经过点(﹣2,3).
(Ⅰ)求a的值,并在给出的直角坐标系中画出y=f(x)的图象;
(Ⅱ)若f(x)在区间(m,m+1)上是单调函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,三角形ABC为等腰直角三角形,AC=BC= ,AA1=1,点D是AB的中点.
(1)求证:AC1∥平面CDB1
(2)二面角B1﹣CD﹣B的平面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,已知长方形ABCD中,AB=2,AD=1,E为DC的中点.将△ADE沿AE折起,使得平面ADE⊥平面ABCE.
(1)求证:平面BDE⊥平面ADE
(2)求三棱锥 C﹣BDE的体积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=2sin(180°﹣x)+cos(﹣x)﹣sin(450°﹣x)+cos(90°+x).
(1)若f(α)= α∈(0°,180°),求tanα;
(2)若f(α)=2sinα﹣cosα+ ,求sinαcosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为R的函数f(x)= 是奇函数.
(1)求实数a的值,并判断f(x)的单调性(不用证明);
(2)已知不等式f(logm )+f(﹣1)>0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,若A,B,C成等差数列,2a,2b,2c成等比数列,则sinAcosBsinC=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+bx+c(a≠0)满足f(0)=0,对于任意x∈R都有f(x)≥x,且f(﹣ +x)=f(﹣ ﹣x),令g(x)=f(x)﹣|λx﹣1|(λ>0).
(1)求函数f(x)的表达式;
(2)函数g(x)在区间(0,1)上有两个零点,求λ的取值范围.

查看答案和解析>>

同步练习册答案