精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其中为常数,

(1)若函数为奇函数,求的值;

(2)若函数上有意义,求实数的取值范围。

【答案】(1) (2)

【解析】试题分析:因为为奇函数,所以对定义域内的任意恒成立,即对定义域内的任意恒成立,故,即对定义域内的任意恒成立,故得出检验是否符合题意即可(2)若内恒有意义,则当时,有恒成立,因为,所以,从而上恒成立,构造 时,不合题意 , 时,同时限制端点即可.

试题解析:

(1)因为为奇函数,所以对定义域内的任意恒成立,

对定义域内的任意恒成立,

,即对定义域内的任意恒成立,

,即

时, 为奇函数,满足条件;

时, 无意义,故不成立。

综上,

(2)内恒有意义,则当时,有恒成立,

因为,所以,从而上恒成立,

,则

时,不合题意

时, ,解得

所以,实数的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某车间20名工人年龄数据如下表:

年龄(岁)

19

24

26

30

34

35

40

合计

工人数(人)

1

3

3

5

4

3

1

20

(1)求这20名工人年龄的众数与平均数;

(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;

(3)从年龄在24和26的工人中随机抽取2人,求这2人均是24岁的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】电视连续剧《人民的名义》自2017年3月28日在湖南卫视开播以来,引发各方关注,收视率、点击率均占据各大排行榜首位.我们用简单随机抽样的方法对这部电视剧的观看情况进行抽样调查,共调查了600人,得到结果如下:其中图1是非常喜欢《人民的名义》这部电视剧的观众年龄的频率分布直方图;表1是不同年龄段的观众选择不同观看方式的人数.

观看方式

年龄(岁)

电视

网络

150

250

120

80

求:(I)假设同一组中的每个数据用该组区间的中点值代替,求非常喜欢《人民的名义》这部电视剧的观众的平均年龄;

(II)根据表1,通过计算说明我们是否有99%的把握认为观看该剧的方式与年龄有关?

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知椭圆,其中分别为其左,右焦点,点是椭圆上一点,,且

(1)当,且时,求的值;

(2)若,试求椭圆离心率的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有甲、乙两个班级进行数学考试,按照大于或等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的2×2列联表.已知从全部210人中随机抽取1人为优秀的概率为.

(1)请完成上面的2×2列联表,并判断若按99%的可靠性要求,能否认为“成绩与班级有关”;

(2)从全部210人中有放回地抽取3次,每次抽取1人,记被抽取的3人中的优秀人数为ξ,若每次抽取的结果是相互独立的,求ξ的分布列及数学期望E(ξ).

P(K2k0)

0.05

0.01

k0

3.841

6.635

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的不等式组

(1) 若k=1,求不等式组的解集;

(2) 若不等式组的整数解的集合为{-2},求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.

(Ⅰ)当0≤x≤200时,求函数v(x)的表达式;

(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=xv(x)可以达到最大,并求出最大值.(精确到1辆/小时).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线C的参数方程为 (其中为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系中,直线的极坐标方程为.

C的普通方程和直线的倾斜角;

设点(0,2),交于两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】天水市第一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,

规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,

得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为.

优秀

非优秀

合计

甲班

10

乙班

30

合计

110

(1)请完成上面的列联表;

(2)根据列联表的数据,若按99.9%的可靠性要求,能否认为成绩与班级有关系

(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号。试求抽到9号或10号的概率。

参考公式与临界值表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

同步练习册答案