精英家教网 > 高中数学 > 题目详情
已知向量
OA
OB
的夹角为60°,|
OA
|=|
OB
|=2,若
OC
=2
OA
+
OB
,则△ABC为(  )
分析:根据题意,由向量加减法的意义,用向量
OA
OB
OC
表示出向量
BC
AB
AC
,结合题意,求出
BC
AB
AC
的模,由三角形的性质,分析可得答案.
解答:解:根据题意,由
OC
=2
OA
+
OB
,可得
OC
-
OB
=
BC
=2
OA
,则|
BC
|=2|
OA
|=4,
AB
=
OA
-
OB
,可得|
AB
|2=|
OA
-
OB
|2=
OA
2-2
OA
OB
+
OB
2=4,故|
AB
|=2,
AC
=
OC
-
OA
=(2
OA
+
OB
)-
OA
=
OA
+
OB
,则|
AC
|2=|
OA
+
OB
|2=
OA
2+2
OA
OB
+
OB
2=12,
可得|
AC
|=2
3

在△ABC中,由|
BC
|=4,|
AB
|=2,|
AC
|=2
3
,可得|
AC
|2=|
BC
|2+|
AC
|2
则△ABC为直角三角形;
故选C.
点评:本题考查数量积的性质与运用,注意先用向量的加法、减法的性质,表示出△ABC的三边的向量.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
OA
OB
的夹角为
π
3
|
OA
|=4
|
OB
|=1
,若点M在直线OB上,则|
OA
-
OM
|
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
OA
OB
的夹角为
π
3
|
OA
|=4
|
OB
|=1
,若点M在直线OB上,则|
OA
-
OM
|
的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•卢湾区二模)已知向量
OA
OB
的夹角为
π
3
| OA|
=4,
| OB|
=1
,若点M在直线OB上,则|
OA
-
OM
|的最小值为
2
3
2
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知向量
OA
OB
的夹角为60°,|
OA
|=|
OB
|=2,若
OC
=2
OA
+
OB
,则△ABC为(  )
A.等腰三角形B.等边三角形
C.直角三角形D.等腰直角三角形

查看答案和解析>>

同步练习册答案