精英家教网 > 高中数学 > 题目详情
20.命题“?x0∈R,3x0+$\frac{1}{{3}^{{x}_{0}}}$≤1”的否定为(  )
A.?x0∈R,3x0+$\frac{1}{{3}^{{x}_{0}}}$>1B.?x0∈R,3x0+$\frac{1}{{3}^{{x}_{0}}}$≥1
C.?x∈R,3x+$\frac{1}{{3}^{{x}$>1D.?x∈R,3x+$\frac{1}{{3}^{{x}$<1

分析 利用命题的否定的定义即可判断出.

解答 解:根据命题的否定的定义知,命题“$?{x_0}∈{R},{3^{x_0}}+\frac{1}{{{3^{x_0}}}}≤1$”的否定为“$?x∈{R},{3^x}+\frac{1}{3^x}>1$”.
故选:C.

点评 本题考查了命题的否定的定义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.若f(x)=$\frac{x-1}{x+1}$,则dy|x=1=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图所示的几何体,关于其结构特征,下列说法不正确的是(  )
A.该几何体是由两个同底的四棱锥组成的几何体
B.该几何体有12条棱、6个顶点
C.该几何体有8个面,并且各面均为三角形
D.该几何体有9个面,其中一个面是四边形,其余均为三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设函数$f(x)=\left\{\begin{array}{l}{2^{x+1}},x≤0\\{log_2}x,x>0\end{array}\right.$,若关于x的方程[f(x)]2-af(x)=0恰有三个不同的实数解,则实数a的取值范围是(0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设数列{an}的前n项和为Sn,已知a1=a(a≠-2),an+1=2Sn+2n,n∈N
(Ⅰ)设bn=Sn+2n.求证:数列{bn}是等比数列;
(Ⅱ)若数列{an}是单调递增数列,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.方程$\frac{x^2}{4-t}+\frac{y^2}{t-1}=1$表示曲线C,有下列命题①若曲线C为椭圆,则1<t<4,②若曲线C为双曲线,则t<1或t>4,③曲线C不可能是圆,④若曲线C表示椭圆且长轴在x轴,则$1<t<\frac{3}{2}$,则以上命题正确的有(  )
A.2个B.3个C.1个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=log2x+2x-6的零点在区间(a,a+1),a∈Z内,则a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.关于直线x+2y=0的对称点仍在圆上,且圆与直线x-y+1=0相交的弦长为2$\sqrt{2}$,求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.定义在R上的奇函数f(x),当x≥0时,f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{3}}(x+1),x∈[0,2)}\\{1-|x-4|,x∈[2,+∞)}\end{array}\right.$,则关于x的函数F(x)=f(x)-a(0<a<1)的所有零点个数为(  )
A.4B.3C.5D.2

查看答案和解析>>

同步练习册答案