精英家教网 > 高中数学 > 题目详情
一批产品需要进行质量检验,质检部门规定的检验方案是:先从这批产品中任取3件作检验,若3件产品都是合格品,则通过检验;若有2件产品是合格品,则再从这批产品中任取1件作检验,这1件产品是合格品才能通过检验;若少于2件合格品,则不能通过检验,也不再抽检.假设这批产品的合格率为80%,且各件产品是否为合格品相互独立.
(1)求这批产品通过检验的概率;
(2)已知每件产品检验费为125元,并且所抽取的产品都要检验,记这批产品的检验费为ζ元,求ζ的概率分布及数学期望.
考点:离散型随机变量的期望与方差
专题:概率与统计
分析:(1)利用n次独立重复试验恰有k次发生的概率计算公式能求出这批产品通过检验的概率.
(2)由已知条件知ζ的所有取值为375,500,分别求出相对应的概率,由此能求出ζ的概率分布列和数学期望.
解答: 解:(1)这批产品通过检验的概率:
P=(
4
5
)3+
C
2
3
•(
4
5
)2•(
1
5
)1
4
5
=
512
625
.…(5分)
(2)由已知条件知ζ的所有取值为375,500,
P(ζ=375)=(
4
5
)3+
C
1
3
(
4
5
)1(
1
5
)2+(
1
5
)3=
77
125

P(ζ=500)=
C
2
3
(
4
5
)2(
1
5
)1=
48
125

∴ζ的概率分布列为:
 ξ  375  500
 P  
77
125
 
48
125
E(ζ)=375×
77
125
+500×
48
125
=423
.…(10分)
点评:本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,在历年高考中都是必考题型之一.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数y=f(x)的图象过定点(3,2),则函数y=f(x+1)-1的图象经过定点
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=cos2x+sinx,那么下列命题中假命题的是(  )
A、f(x)在[-π,0]上恰有一个零点
B、f(x)既不是奇函数也不是偶函数
C、f(x)是周期函数
D、f(x)在区间(
π
2
6
)上是增函数

查看答案和解析>>

科目:高中数学 来源: 题型:

由直线x-y+1=0,x+y-5=0和x-1=0所围成的三角形区域(包括边界)用不等式组可表示为(  )
A、
x-y+1≤0
x+y-5≤0
x≥1
B、
x-y+1≥0
x+y-5≤0
x≥1
C、
x-y+1≥0
x+y-5≥0
x≤1
D、
x-y+1≤0
x+y-5≤0
x≤1

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面区域
0≤x≤2
0≤y≤2
内随机取一点,则所取的点恰好满足x+y≤
2
的概率是(  )
A、
1
16
B、
1
8
C、
1
4
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

某中学高一女生共有450人,为了了解高一女生的身高情况,随机抽取部分高一女生测量身高,所得数据整理后列出频率分布表如下:
组别 频数 频率
145.5~149.5 8 0.16
149.5~153.5 6 0.12
153.5~157.5 14 0.28
157.5~161.5 10 0.20
161.5~165.5 8 0.16
165.5~169.5 m n
合计 M N
(1)求出表中字母m、n、M、N所对应的数值;
(2)在给出的直角坐标系中画出频率分布直方图;
(3)估计该校高一女生身高在149.5~165.5cm范围内有多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2cos2x+
3
sin2x,x∈R.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)将函数f(x)图象上所有点的横坐标伸长为原来的2倍,纵坐标不变,得到的函数h(x)的图象,再将函数h(x)的图象向右平移
π
3
个单位后得到函数g(x)的图象,求函数g(x)的解析式,并求在[0,π]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=
sec2x+tanx
sec2x-tanx
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在(-∞,0)上的可导函数,其导函数为f′(x),且2f(x)+xf′(x)>x2,则不等式(x+2014)2f(x+2014)-4f(-2)>0的解集为
 

查看答案和解析>>

同步练习册答案