精英家教网 > 高中数学 > 题目详情

已知斜三棱柱ABC-A1B1C1,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰为AC的中点D,又知BA1⊥AC1

(Ⅰ)求证:AC1⊥平面A1BC;

(Ⅱ)求CC1到平面A1AB的距离;

(Ⅲ)求二面角A―A1B―C余弦值的大小.

答案:
解析:

  解:(Ⅰ)如图,取的中点,则,因为

  所以,又平面

  以轴建立空间坐标系,

  则

  

  ,知,又,从而平面

  (Ⅱ)由,得

  设平面的法向量为,所以

  

  所以点到平面的距离

  (Ⅲ)再设平面的法向量为

  所以

  

  故,根据法向量的方向,

  可知二面角的余弦值大小为


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知斜三棱柱ABC-A1B1C1的侧面BB1C1C是边长为2的菱形,∠B1BC=60°,侧面BB1C1C⊥底面ABC,∠ABC=90°,二面角A-B1B-C为30°.
(1)求证:AC⊥平面BB1C1C;
(2)求AB1与平面BB1C1C所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知斜三棱柱ABC-A1B1C1的侧面BB1C1C与底面ABC垂直,BB1=BC,∠B1BC=60°,AB=AC,M是B1C1的中点.
(Ⅰ)求证:AB1∥平面A1CM;
(Ⅱ)若AB1与平面BB1C1C所成的角为45°,求二面角B-AC-B1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知斜三棱柱ABC-A1B1C1的底面边长AB=2,BC=3,BC⊥面ABC1,CC1与面ABC所成的角为60°则斜三棱柱ABC-A1B1C1体积的最小值是
9
3
9
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知斜三棱柱ABC-A1B1C1的各棱长均为2,侧棱与底面所成角为
π3
,且侧面ABB1A1垂直于底面.
(1)判断B1C与C1A是否垂直,并证明你的结论;
(2)求四棱锥B-ACC1A1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知斜三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=2,点D为AC的中点,A1D⊥平面ABC,A1B⊥ACl
(I)求证:AC1⊥AlC; 
(Ⅱ)求二面角A-A1B-C的余弦值.

查看答案和解析>>

同步练习册答案