分析 根据$\overrightarrow{a}⊥\overrightarrow{b}$便可得出$\overrightarrow{a}•\overrightarrow{b}=0$,从而可求出m的值,进而得出$\overrightarrow{a}$的坐标,从而可得出$|\overrightarrow{a}|$的值.
解答 解:∵$\overrightarrow{a}⊥\overrightarrow{b}$;
∴$\overrightarrow{a}•\overrightarrow{b}=2m+m-1=0$;
∴$m=\frac{1}{3}$;
∴$\overrightarrow{a}=(\frac{1}{3},-\frac{2}{3})$;
∴$|\overrightarrow{a}|=\sqrt{\frac{1}{9}+\frac{4}{9}}=\frac{\sqrt{5}}{3}$.
故答案为:$\frac{\sqrt{5}}{3}$.
点评 考查向量垂直的充要条件,向量数量积的坐标运算,以及能根据向量坐标求向量长度.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | $\frac{3}{4}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 命题“若x>y,则x>|y|”的逆命题 | B. | 命题“若x2≤1,则x≤1”的否命题 | ||
| C. | 命题“若x=1,则x2-x=0”的否命题 | D. | 命题“若$a>b,则\frac{1}{a}<\frac{1}{b}$”的逆否命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com