精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=x3+x2f'(1).
(1)求f'(1)和函数x的极值;
(2)若关于x的方程f(x)=a有3个不同实根,求实数a的取值范围;
(3)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程.

【答案】
(1)解:由f(x)=x3+x2f'(1),求导f′(x)=3x2+2f'(1)x,

则f′(1)=3+2f'(1),解得:f′(1)=﹣3,

∴f(x)=x3﹣3x2,f′(x)=3x(x﹣2),

令f′(x)=0,解得:x=0,x=2,

由x,f′(x),f(x)变化,

x

(﹣∞,0)

0

(0,2)

2

(2,+∞)

f′(x)

+

0

0

+

f(x)

极大值0

极小值﹣4

则当x=0,f(x)取极大值0,当x=2时,取极小值﹣4


(2)解:由题意可知:y=a与f(x)有三个不同的交点,

由函数图象可知:

∴﹣4<a<0


(3)解:设切点(x0,x03﹣3x02),切线斜率k=3x02﹣6x0

则切线方程y﹣(x03﹣3x02)=(3x02﹣6x0)(x﹣x0),

由切线过(0,0),则﹣x03+3x02=﹣x0(3x02﹣6x0),解得:x0=0,或x0=

当x0=0,切线k=0,切线方程y=0,

当x0= ,切点( ,﹣ ),切线k=﹣ ,切线方程y=﹣ x,

直线l的方程y=0或y=﹣ x


【解析】(1)求导f′(x)=3x2+2f'(1)x,f′(1)=3+2f'(1),解得:f′(1)=﹣3,则f′(x)=3x(x﹣2),令f′(x)=0,解得:x=0,x=2,由函数的单调性与导数的关系,即可求得f(x)的极值;(2)由题意可知:y=a与f(x)有三个不同的交点,利用函数的图象即可求得实数a的取值范围;(3)设切点(x0 , x03﹣3x02),斜线斜率k=3x02﹣6x0 , 求得切线方程,由函数过(0,0),即可求得x0 , 即可求得直线l的方程.
【考点精析】根据题目的已知条件,利用函数的极值与导数的相关知识可以得到问题的答案,需要掌握求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆为参数), 上的动点,且满足为坐标原点),以原点为极点, 轴的正半轴为极轴建立坐标系,点的极坐标为.

(1)求线段的中点的轨迹的普通方程;

(2)利用椭圆的极坐标方程证明为定值,并求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(
A.“f(0)=0”是“函数f(x)是奇函数”的充要条件
B.若p:?x0∈R,x02﹣x0﹣1>0,则¬p:?x∈R,x2﹣x﹣1<0
C.若p∧q为假命题,则p,q均为假命题
D.“若α= ,则sinα= ”的否命题是“若α≠ ,则sinα≠

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义域与值域都是[﹣2,2]的两个函数f(x)、g(x)的图象如图所示(实线部分),则下列四个命题中,
①方程f[g(x)]=0有6个不同的实数根;
②方程g[f(x)]=0有4个不同的实数根;
③方程f[f(x)]=0有5个不同的实数根;
④方程g[g(x)]=0有3个不同的实数根;
正确的命题是(

A.②③④
B.①④
C.②③
D.①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax﹣ (a,b∈N*),f(1)= 且f(2)<2.
(1)求a,b的值;
(2)判断并证明函数y=f(x)在区间(﹣1,+∞)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知为椭圆上的点,且,过点的动直线与圆相交于两点,过点作直线的垂线与椭圆相交于点

(1)求椭圆的离心率;

(2)若,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 在点(1,f(1))处的切线与x轴平行.
(Ⅰ)求实数a的值及f(x)的极值;
(Ⅱ)是否存在区间(t,t+ )(t>0),使函数f(x)在此区间上存在极值和零点?若存在,求实数t的取值范围,若不存在,请说明理由;
(Ⅲ)如果对任意的 ,有|f(x1)﹣f(x2)|≥k| |,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知为椭圆上的点,且,过点的动直线与圆相交于两点,过点作直线的垂线与椭圆相交于点

(1)求椭圆的离心率;

(2)若,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】棉花的纤维长度是评价棉花质量的重要指标,某农科所的专家在土壤环境不同的甲、乙两块实验地分别种植某品种的棉花,为了评价该品种的棉花质量,在棉花成熟后,分别从甲、乙两地的棉花中各随机抽取20根棉花纤维进行统计,结果如下表:(记纤维长度不低于300的为“长纤维”,其余为“短纤维”)

纤维长度

甲地(根数)

3

4

4

5

4

乙地(根数)

1

1

2

10

6

(1)由以上统计数据,填写下面列联表,并判断能否在犯错误概率不超过0.025的前提下认为“纤维长度与土壤环境有关系”.

甲地

乙地

总计

长纤维

短纤维

总计

附:(1)

(2)临界值表;

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

(2)现从上述40根纤维中,按纤维长度是否为“长纤维”还是“短纤维”采用分层抽样的方法抽取8根进行检测,在这8根纤维中,记乙地“短纤维”的根数为,求的分布列及数学期望.

查看答案和解析>>

同步练习册答案