4£®µçÊÓ´«Ã½¹«Ë¾ÎªÁ˽âijµØÇø¹ÛÖÚ¶ÔijÀàÌåÓý½ÚÄ¿µÄÊÕÊÓÇé¿ö£¬Ëæ»ú³éÈ¡ÁË100Ãû¹ÛÖÚ½øÐе÷²é£¬ÆäÖÐÅ®ÐÔÓÐ55Ãû£®ÏÂÃæÊǸù¾Ýµ÷²é½á¹û»æÖƵĹÛÖÚÈÕ¾ùÊÕ¿´¸ÃÌåÓý½ÚĿʱ¼äµÄƵÂÊ·Ö²¼Ö±·½Í¼£º½«ÈÕ¾ùÊÕ¿´¸ÃÌåÓý½ÚĿʱ¼ä²»µÍÓÚ40·ÖÖӵĹÛÖÚ³ÆÎª¡°ÌåÓýÃÔ¡±£¬ÒÑÖª¡°ÌåÓýÃÔ¡±ÖÐÓÐ10ÃûÅ®ÐÔ£®
£¨1£©¸ù¾ÝÒÑÖªÌõ¼þÍê³ÉÏÂÃæµÄ2¡Á2ÁÐÁª±í£¬²¢¾Ý´Ë×ÊÁÏÄãÊÇ·ñÈÏΪ¡°ÌåÓýÃÔ¡±ÓëÐÔ±ðÓйأ¿
·ÇÌåÓýÃÔÌåÓýÃԺϼÆ
ÄÐ
Å®
×ܼÆ
£¨2£©½«ÈÕ¾ùÊÕ¿´¸ÃÌåÓý½ÚÄ¿²»µÍÓÚ50·ÖÖӵĹÛÖÚ³ÆÎª¡°³¬¼¶ÌåÓýÃÔ¡±£¬ÒÑÖª¡°³¬¼¶ÌåÓýÃÔ¡±ÖÐÓÐ2ÃûÅ®ÐÔ£¬Èô´Ó¡°³¬¼¶ÌåÓýÃÔ¡±ÖÐÈÎÒâѡȡ2Ãû£¬ÇóÖÁÉÙÓÐ1ÃûÅ®ÐÔ¹ÛÖڵĸÅÂÊ£®
¸½£ºK2=$\frac{{n{{£¨{bc-ad}£©}^2}}}{{£¨{a+b}£©£¨{c+d}£©£¨{a+c}£©£¨{b+d}£©}}$
P£¨K2¡Ýk0£©0.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.845.0246.6357.87910.83

·ÖÎö £¨1£©ÓÉÆµÂÊ·Ö²¼Ö±·½Í¼ÖпÉÖª£º³éÈ¡µÄ100Ãû¹ÛÖÚÖУ¬¡°ÌåÓýÃÔ¡±¹²ÓУ¨0.020+0.005£©¡Á10¡Á100=25Ãû£®¿ÉµÃ2¡Á2ÁÐÁª±í£¬½«2¡Á2ÁÐÁª±íÖеÄÊý¾Ý´úÈ빫ʽ¼ÆËã¿ÉµÃK2µÄ¹Û²âֵΪ£ºk¡Ö3.030£®ÓÉ¡°¶ÀÁ¢ÐÔ¼ìÑé»ù±¾Ô­Àí¡±¼´¿ÉÅжϳö£»
£¨2£©ÓÉÆµÂÊ·Ö²¼Ö±·½Í¼ÖпÉÖª£º¡°³¬¼¶ÌåÓýÃÔ¡±ÓÐ5Ãû£¬´Ó¶øÒ»ÇпÉÄܽá¹ûËù×é³ÉµÄ»ù±¾Ê¼þ¿Õ¼ä¦¸={£¨a1£¬a2£©£¬£¨a1£¬a3£©£¬£¨a2£¬a3£©£¬£¨a1£¬b1£©£¬£¨a1£¬b2£©£¬£¨a2£¬b1£©£¬£¨a2£¬b2£©£¬£¨a3£¬b1£©£¬£¨a3£¬b2£©£¬£¨b1£¬b2£©}£¬ÆäÖÐai£¨i=1£¬2£¬3£©±íʾÄÐÐÔ£¬bj£¨j=1£¬2£©±íʾŮÐÔ£®ÉèA±íʾʼþ¡°´Ó¡°³¬¼¶ÌåÓýÃÔ¡±ÖÐÈÎÒâѡȡ2Ãû£¬ÖÁÉÙÓÐ1ÃûÅ®ÐÔ¹ÛÖÚ¡±£¬¿ÉµÃʼþA°üÀ¨7¸ö»ù±¾Ê¼þ£¬ÀûÓùŵä¸ÅÂʼÆË㹫ʽ¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©ÓÉÆµÂÊ·Ö²¼Ö±·½Í¼ÖпÉÖª£º³éÈ¡µÄ100Ãû¹ÛÖÚÖУ¬¡°ÌåÓýÃÔ¡±¹²ÓУ¨0.020+0.005£©¡Á10¡Á100=25Ãû£®¿ÉµÃ2¡Á2ÁÐÁª±í£º

·ÇÌåÓýÃÔÌåÓýÃԺϼÆ
ÄÐ301545
Ů451055
×ܼÆ7525100
½«2¡Á2ÁÐÁª±íÖеÄÊý¾Ý´úÈ빫ʽ¼ÆËã¿ÉµÃK2µÄ¹Û²âֵΪ£ºk=$\frac{100¡Á30¡Á10-45¡Á1{5}^{2}}{75¡Á25¡Á45¡Á55}$=$\frac{100}{33}$¡Ö3.030£®
¡ß3.030£¼3.841£¬
¡àÎÒÃÇûÓÐÀíÓÉÈÏΪ¡°ÌåÓýÃÔ¡±ÓëÐÔ±ðÓйأ®
£¨2£©ÓÉÆµÂÊ·Ö²¼Ö±·½Í¼ÖпÉÖª£º¡°³¬¼¶ÌåÓýÃÔ¡±ÓÐ5Ãû£¬´Ó¶øÒ»ÇпÉÄܽá¹ûËù×é³ÉµÄ»ù±¾Ê¼þ¿Õ¼ä¦¸={£¨a1£¬a2£©£¬£¨a1£¬a3£©£¬£¨a2£¬a3£©£¬£¨a1£¬b1£©£¬£¨a1£¬b2£©£¬£¨a2£¬b1£©£¬£¨a2£¬b2£©£¬£¨a3£¬b1£©£¬£¨a3£¬b2£©£¬£¨b1£¬b2£©}£¬ÆäÖÐai£¨i=1£¬2£¬3£©±íʾÄÐÐÔ£¬bj£¨j=1£¬2£©±íʾŮÐÔ£®
ÉèA±íʾʼþ¡°´Ó¡°³¬¼¶ÌåÓýÃÔ¡±ÖÐÈÎÒâѡȡ2Ãû£¬ÖÁÉÙÓÐ1ÃûÅ®ÐÔ¹ÛÖÚ¡±£¬ÔòʼþA°üÀ¨7¸ö»ù±¾Ê¼þ£º£¨a1£¬b1£©£¬£¨a1£¬b2£©£¬£¨a2£¬b1£©£¬£¨a2£¬b2£©£¬£¨a3£¬b1£©£¬£¨a3£¬b2£©£¬£¨b1£¬b2£©£®
¡àP£¨A£©=$\frac{7}{10}$£®

µãÆÀ ±¾Ì⿼²éÁË¡°¶ÀÁ¢ÐÔ¼ìÑé»ù±¾Ô­Àí¡±¡¢¹Åµä¸ÅÂʼÆË㹫ʽ¡¢ÆµÂÊ·Ö²¼Ö±·½Í¼¼°ÆäÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÈçͼËùʾ£¬Æ½ÃæÄÚÓÐÈý¸öÏòÁ¿$\overrightarrow{OA}$£¬$\overrightarrow{OB}$£¬$\overrightarrow{OC}$£¬$\overrightarrow{OA}$Óë$\overrightarrow{OB}$¼Ð½ÇΪ120¡ã£¬$\overrightarrow{OA}$Óë$\overrightarrow{OC}$¼Ð½ÇΪ150¡ã£¬ÇÒ$|{\overrightarrow{OA}}|=|{\overrightarrow{OB}}|=1$£¬$|{\overrightarrow{OC}}|=2\sqrt{3}$£¬Èô$\overrightarrow{OC}=¦Ë\overrightarrow{OA}+¦Ì\overrightarrow{OB}$£¨¦Ë£¬¦Ì¡ÊR£©£¬Ôò¦Ë+¦Ì=£¨¡¡¡¡£©
A£®1B£®$-\frac{9}{2}$C£®-6D£®6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªº¯Êýf£¨x£©=sinx-cosx£¬f¡ä£¨x£©ÊÇf£¨x£©µÄµ¼º¯Êý£®
£¨1£©Çóº¯ÊýF£¨x£©=f£¨x£©f¡ä£¨x£©+f2£¨x£©µÄ×îСÕýÖÜÆÚºÍ×î´óÖµ£®
£¨2£©Èôf£¨x£©=2f¡ä£¨x£©£¬Çó$\frac{1}{{sin2x+{{cos}^2}x}}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÎªÁ˵÷²é¼×¡¢ÒÒÁ½¸öÍøÕ¾ÊÜ»¶Ó­µÄ³Ì¶È£¬Ëæ»úѡȡÁË14Ì죬ͳ¼ÆÉÏÎç8£º00-10£º00¼ä¸÷×Եĵã»÷Á¿£¬µÃµ½Èçͼ¾¥Ò¶Í¼£¬Ôò¼×¡¢ÒÒÁ½¸öÍøÕ¾µã»÷Á¿µÄÖÐλÊý·Ö±ðÊÇ£¨¡¡¡¡£©
A£®55£¬36B£®55.5£¬36.5C£®56.5£¬36.5D£®58£¬37

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®Éèf£¨x£©=|lgx|£¬Èôº¯Êýg£¨x£©=f£¨x£©-axÔÚÇø¼ä£¨0£¬4£©ÉÏÓÐÈý¸öÁãµã£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®$£¨{\frac{lg2}{2}£¬\frac{lge}{e}}£©$B£®$£¨{0£¬\frac{1}{e}}£©$C£®$£¨{\frac{lg2}{2}£¬e}£©$D£®$£¨{0£¬\frac{lg2}{2}}£©$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬C=$\frac{¦Ð}{2}$£¬A=$\frac{¦Ð}{3}$£¬¹ýC×÷¡÷ABCµÄÍâ½ÓÔ²µÄÇÐÏßCD£¬BD¡ÍCD£¬BDÓëÍâ½ÓÔ²½»ÓÚµãE£¬ÈôDEµÄ³¤Îª2£¬ÔòAC=10£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬Sn+an=-$\frac{1}{2}{n^2}-\frac{3}{2}$n+1£¨n¡ÊN*£©
£¨1£©Éèbn=an+n£¬Ö¤Ã÷£ºÊýÁÐ{bn}ÊǵȱÈÊýÁУ»
£¨2£©Èô${c_n}={£¨{\frac{1}{2}}£©^n}-{a_n}$£¬dn=$\sqrt{1+\frac{1}{{{c_n}^2}}+\frac{1}{{{c_{n+1}}^2}}}$£¬P=d1+d2+d3+¡­+d2015£¬Çó²»³¬¹ýPµÄ×î´óÕûÊýµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÉèÎÞÇîµÈ²îÊýÁÐ{an}µÄǰnÏîºÍΪSn
£¨1£©a1=-4£¬¹«²îd=2£¬ÇóÂú×ã${S_{k^2}}={£¨{S_k}£©^2}$µÄÕýÕûÊýk£»
£¨2£©ÇóÂú×㣺¶ÔÓÚÒ»ÇÐÕýÕûÊýk£¬¶¼ÓÐ${£¨{S_k}£©^2}={S_{k^2}}$³ÉÁ¢µÄËùÓеÄÎÞÇîµÈ²îÊýÁÐ{an}£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÊýÁÐ$1\frac{1}{2}£¬2\frac{1}{4}£¬3\frac{1}{8}£¬4\frac{1}{16}£¬¡­$µÄͨÏʽan¿ÉÒÔÊÇ£¨¡¡¡¡£©
A£®${a_n}=n+\frac{1}{2^n}$B£®${a_n}=n•\frac{1}{2^n}$C£®${a_n}=n+\frac{1}{{{2^{n-1}}}}$D£®${a_n}=£¨{n-1}£©+\frac{1}{{{2^{n-1}}}}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸