| ·ÇÌåÓýÃÔ | ÌåÓýÃÔ | ºÏ¼Æ | |
| ÄÐ | |||
| Å® | |||
| ×Ü¼Æ |
| P£¨K2¡Ýk0£© | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
| k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.83 |
·ÖÎö £¨1£©ÓÉÆµÂÊ·Ö²¼Ö±·½Í¼ÖпÉÖª£º³éÈ¡µÄ100Ãû¹ÛÖÚÖУ¬¡°ÌåÓýÃÔ¡±¹²ÓУ¨0.020+0.005£©¡Á10¡Á100=25Ãû£®¿ÉµÃ2¡Á2ÁÐÁª±í£¬½«2¡Á2ÁÐÁª±íÖеÄÊý¾Ý´úÈ빫ʽ¼ÆËã¿ÉµÃK2µÄ¹Û²âֵΪ£ºk¡Ö3.030£®ÓÉ¡°¶ÀÁ¢ÐÔ¼ìÑé»ù±¾ÔÀí¡±¼´¿ÉÅжϳö£»
£¨2£©ÓÉÆµÂÊ·Ö²¼Ö±·½Í¼ÖпÉÖª£º¡°³¬¼¶ÌåÓýÃÔ¡±ÓÐ5Ãû£¬´Ó¶øÒ»ÇпÉÄܽá¹ûËù×é³ÉµÄ»ù±¾Ê¼þ¿Õ¼ä¦¸={£¨a1£¬a2£©£¬£¨a1£¬a3£©£¬£¨a2£¬a3£©£¬£¨a1£¬b1£©£¬£¨a1£¬b2£©£¬£¨a2£¬b1£©£¬£¨a2£¬b2£©£¬£¨a3£¬b1£©£¬£¨a3£¬b2£©£¬£¨b1£¬b2£©}£¬ÆäÖÐai£¨i=1£¬2£¬3£©±íʾÄÐÐÔ£¬bj£¨j=1£¬2£©±íʾŮÐÔ£®ÉèA±íʾʼþ¡°´Ó¡°³¬¼¶ÌåÓýÃÔ¡±ÖÐÈÎÒâѡȡ2Ãû£¬ÖÁÉÙÓÐ1ÃûÅ®ÐÔ¹ÛÖÚ¡±£¬¿ÉµÃʼþA°üÀ¨7¸ö»ù±¾Ê¼þ£¬ÀûÓùŵä¸ÅÂʼÆË㹫ʽ¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨1£©ÓÉÆµÂÊ·Ö²¼Ö±·½Í¼ÖпÉÖª£º³éÈ¡µÄ100Ãû¹ÛÖÚÖУ¬¡°ÌåÓýÃÔ¡±¹²ÓУ¨0.020+0.005£©¡Á10¡Á100=25Ãû£®¿ÉµÃ2¡Á2ÁÐÁª±í£º
| ·ÇÌåÓýÃÔ | ÌåÓýÃÔ | ºÏ¼Æ | |
| ÄÐ | 30 | 15 | 45 |
| Å® | 45 | 10 | 55 |
| ×Ü¼Æ | 75 | 25 | 100 |
µãÆÀ ±¾Ì⿼²éÁË¡°¶ÀÁ¢ÐÔ¼ìÑé»ù±¾ÔÀí¡±¡¢¹Åµä¸ÅÂʼÆË㹫ʽ¡¢ÆµÂÊ·Ö²¼Ö±·½Í¼¼°ÆäÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1 | B£® | $-\frac{9}{2}$ | C£® | -6 | D£® | 6 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 55£¬36 | B£® | 55.5£¬36.5 | C£® | 56.5£¬36.5 | D£® | 58£¬37 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $£¨{\frac{lg2}{2}£¬\frac{lge}{e}}£©$ | B£® | $£¨{0£¬\frac{1}{e}}£©$ | C£® | $£¨{\frac{lg2}{2}£¬e}£©$ | D£® | $£¨{0£¬\frac{lg2}{2}}£©$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ${a_n}=n+\frac{1}{2^n}$ | B£® | ${a_n}=n•\frac{1}{2^n}$ | C£® | ${a_n}=n+\frac{1}{{{2^{n-1}}}}$ | D£® | ${a_n}=£¨{n-1}£©+\frac{1}{{{2^{n-1}}}}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com