【题目】已知集合A={x|4≤x<8,x∈R},B={x|6<x<9,x∈R},C={x|x>a,x∈R}.
(1)求A∪B;
(2)(UA)∩B;
(3)若A∩C=,求a的取值范围.
【答案】解:(1)∵A={x|4≤x<8},B={x|6<x<9},
∴A∪B={x|4≤x<9};
(2)∵A={x|4≤x<8},全集为R,
∴UA={x|x<4或x≥8},
∵B={x|6<x<9},
则(UA)∩B={x|8≤x<9};
(3)∵A∩C=,且A={x|4≤x<8},C={x|x>a},
∴a的取值范围是a≥8.
【解析】(1)根据A与B,求出两集合的并集即可;
(2)由全集U=R,求出A的补集,找出A补集与B的交集即可;
(3)由A与C,且A与C的交集为空集,确定出a的范围即可.
【考点精析】掌握交、并、补集的混合运算是解答本题的根本,需要知道求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法.
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( ) ①若一个平面内的两条直线都与另一个平面平行,那么这两个平面相互平行;
②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;
③一条直线垂直于一个平面内的无数条直线,则这条直线和这个平面垂直;
④垂直于同一直线的两平面互相平行.
A.①和②
B.②和③
C.②和④
D.③和④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在R上的函数f(x)满足(x﹣1)f′(x)≤0,且f(﹣x)=f(2+x),当|x1﹣1|<|x2﹣1|时,有( )
A.f(2﹣x1)≥f(2﹣x2)
B.f(2﹣x1)=f(2﹣x2)
C.f(2﹣x1)>f(2﹣x2)
D.f(2﹣x1)≤f(2﹣x2)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设m,n,l是三条不同的直线,α是一个平面,l⊥m,则下列说法正确的是( )
A.若mα,l⊥α,则m∥α
B.若l⊥n,则m⊥n
C.若l⊥n,则m∥n
D.若m∥n,nα,则l⊥α
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com