精英家教网 > 高中数学 > 题目详情
选修4-5:不等式选讲
已知函数f(x)=|x-a|.
(I)若不等式f(x)≤m的解集为{x|-1≤x≤5},求实数a,m的值.
(II)当a=2时,解关于x的不等式f(x)+t≥f(x+2t)(t≥0).
分析:(I)根据绝对值不等式的解法,我们可得f(x)≤m的解集a-m≤x≤a+m,再由已知中f(x)≤m的解集为{x|-1≤x≤5},由此可以构造一个关于a,m的二元一次方程组,解方程组,即可得到答案.
(II)当a=2时,f(x)+t≥f(x+2t)可以转化为|x-2+2t|-|x-2|≤t,分t=0,t>0两种情况,分别解不等式,即可得到答案.
解答:解:(Ⅰ)由|x-a|≤m得a-m≤x≤a+m,
所以
a-m=-1
a+m=5
解之得
a=2
m=3
为所求.…(3分)
(Ⅱ)当a=2时,f(x)=|x-2|,
所以f(x)+t≥f(x+2t)?|x-2+2t|-|x-2|≤t,①
当t=0时,不等式①恒成立,即x∈R;
当t>0时,不等式①?
x<2-2t
2-2t-x-(2-x)≤t
2-2t≤x<2
x-2+2t-(2-x)≤t
x≥2
x-2+2t-(x-2)≤t

解之得x<2-2t或2-2t≤x≤2-
t
2
或x∈?,即x≤2-
t
2

综上,当t=0时,原不等式的解集为R,
当t>0时,原不等式的解集为{x|x≤2-
t
2
}
.…(10分)
点评:本题考查的知识点是绝对值不等式的解法,其中根据“大于看两边,小于看中间”或“零点分段法”去掉绝对值符号,将原不等式转化为整式不等式,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
设x,y,z∈(0,+∞),且x+y+z=1,求
1
x
+
4
y
+
9
z
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【选修4-5:不等式选讲】
求下列不等式的解集
(Ⅰ)|2x-1|-|x+3|>0
(Ⅱ)x+|2x-1|>3.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲:
设正有理数x是
2
的一个近似值,令y=1+
1
1+x

(Ⅰ)若x>
2
,求证:y<
2

(Ⅱ)比较y与x哪一个更接近于
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•盐城模拟)(选修4-5:不等式选讲)
已知a,b,c为正数,且a2+a2+c2=14,试求a+2b+3c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•乌鲁木齐一模)选修4-5:不等式选讲
设函数,f(x)=|x-1|+|x-2|.
(I)求证f(x)≥1;
(II)若f(x)=
a2+2
a2+1
成立,求x的取值范围.

查看答案和解析>>

同步练习册答案