【题目】动点A(x,y)在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.已知时间t=0时,点A的坐标是
,则当0≤t≤12时,动点A的纵坐标y关于t(单位:秒)的函数的单调递增区间是( )
A.[0,1]
B.[1,7]
C.[7,12]
D.[0,1]和[7,12]
科目:高中数学 来源: 题型:
【题目】设两个非零向量
与
不共线.
(1)若
=
+
,
=2
+8
,
=3(
﹣
).求证:A,B,D三点共线;
(2)试确定实数k,使k
+
和
+k
共线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中错误的个数为:( )
①y=
的图象关于(0,0)对称;
②y=x3+x+1的图象关于(0,1)对称;
③y=
的图象关于直线x=0对称;
④y=sinx+cosx的图象关于直线x=
对称.
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2cosx(sinx+cosx),x∈R.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)求函数f(x)的单调递增区间;
(Ⅲ)求函数f(x)在区间[﹣
,
]上的最小值和最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知{an}是等差数列,满足a1=3,a4=12,数列{bn}满足b1=4,b4=20,且{bn﹣an}为等比数列.
(1)求数列{an}和{bn}的通项公式;
(2)求数列{bn}的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆两焦点
,并且经过点
.
(1)求椭圆的方程;
(2)若过点A(0,2)的直线l与椭圆交于不同的两点M、N(M在A、N之间),试求△OAM与△OAN面积之比的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,角α(0≤α≤π)的始边为x轴的非负半轴,终边与单位圆的交点为A,将OA绕坐标原点逆时针旋转
至OB,过点B作x轴的垂线,垂足为Q.记线段BQ的长为y,则函数y=f(α)的图象大致是( )![]()
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知下列命题:( )
①向量
,
不共线,则向量
与向量
一定不共线
②对任意向量
,
,则
恒成立
③在同一平面内,对两两均不共线的向量
,
,
,若给定单位向量
和正数
,总存在单位向量
和实数
,使得 ![]()
则正确的序号为( )
A.①②③
B.①③
C.②③
D.①②
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com