λ(x1-x2)2≤(x1-x2)[f(x1)-f(x2)]和|f(x1)-f(x2)|≤|x1-x2|,
其中λ是大于0的常数,设实数a0,a,b满足f(a0)=0和b=a-λf(a).
(1)证明λ≤1,并且不存在b0≠a0,使得f(b0)=0;
(2)证明(b-a0)2≤(1-λ2)(a-a0)2;
(3)证明[f(b)]2≤(1-λ2)[f(a)]2.
思路分析:(1)利用不等式的传递性及反证法证明;(2),(3)都是由构造法,结合不等式的传递性证明.
证明:(1)任取x1,x2∈R,x1≠x2,
则由λ(x1-x2)2≤(x1-x2)[f(x1)-f(x2)]①
和|f(x1)-f(x2)|≤|x1-x2|,②
可知,λ(x1-x2)2≤(x1-x2)[f(x1)-f(x2)]≤|x1-x2|·|f(x1)-f(x2)|≤|x1-x2|2,
从而λ≤1.
假设有b0≠a0,使得f(b0)=0,
则由①式知0<λ(a0-b0)2≤(a0-b0)[f(a0)-f(b0)]=0,矛盾.
所以不存在b0≠a0,使得f(b0)=0.
(2)由b=a-λf(a),③
可知(b-a0)2=[a-a0-λf(a)]2=(a-a0)2-2λ(a-a0)f(a)+λ2[f(a)]2.④
由f(a0)=0和①式,得(a-a0)f(a)=(a-a0)[f(a)-f(a0)]≥λ(a-a0)2.⑤
由f(a0)=0和②式知,[f(a)]2=[f(a)-f(a0)]2≤(a-a0)2.⑥
则将⑤⑥代入④式,得(b-a0)2≤(a-a0)2-2λ2(a-a0)2+λ2(a-a0)2=(1-λ2)(a-a0)2.
(3)由③式,可知[f(b)]2=[f(b)-f(a)+f(a)]2
=[f(b)-f(a)]2+2f(a)[f(b)-f(a)]+[f(a)]2
≤(b-a)2-2·[f(b)-f(a)]+[f(a)]2
=λ2[f(a)]2-(b-a)[f(b)-f(a)]+[f(a)]2
≤λ2[f(a)]2-·λ·(b-a)2+[f(a)]2
=λ2[f(a)]2-2λ2[f(a)]2+[f(a)]2
=(1-λ2)[f(a)]2.
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
x |
a |
b |
x |
4c2 |
k(k+c) |
查看答案和解析>>
科目:高中数学 来源:浙江省东阳中学高三10月阶段性考试数学理科试题 题型:022
已知函数f(x)的图像在[a,b]上连续不断,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值,若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.已知函数f(x)=x2,x∈[-1,4]为[-1,4]上的“k阶收缩函数”,则k的值是_________.
查看答案和解析>>
科目:高中数学 来源:上海模拟 题型:解答题
x |
a |
b |
x |
4c2 |
k(k+c) |
查看答案和解析>>
科目:高中数学 来源:2009-2010学年河南省许昌市长葛三高高三第七次考试数学试卷(理科)(解析版) 题型:选择题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com