精英家教网 > 高中数学 > 题目详情
7.函数y=2cos(2x+$\frac{π}{3}$)+3,x∈[0,$\frac{π}{2}$]的值域为[1,4].

分析 由条件利用余弦函数的定义域和值域,求得函数的值域.

解答 解:∵x∈[0,$\frac{π}{2}$],∴2x+$\frac{π}{3}$∈[$\frac{π}{3}$,$\frac{4π}{3}$],∴cos(2x+$\frac{π}{3}$)∈[-1,$\frac{1}{2}$],
∴y=2cos(2x+$\frac{π}{3}$)+3∈[1,4],
故答案为:[1,4].

点评 本题主要考查余弦函数的定义域和值域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.求函数$y=\frac{1-x}{{(1+{x^2})cosx}}$的导数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={x|x2-16<0},B={x|x2-4x+3>0},求A∩B=(  )
A.RB.{x|x<1,或x>3}C.{x|-4<x<4}D.{x|-4<x<1,或3<x<4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在△ABC中,a=$\sqrt{6}$,b=2$\sqrt{3}$,A=30°,则角B45°或135°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.下列命题中:
①α=2kx+$\frac{π}{3}$(k∈Z)是tanα=$\sqrt{3}$的充分不必要条件; 
②已知命题P:?x∈R,lgx=0;
命题Q:?x∈R,2x>0,则P∧Q为真命题; 
③若|$\overrightarrow{a}$|=2|$\overrightarrow{b}$|≠0,函数f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$|$\overrightarrow{a}$|x2+$\overrightarrow{a}$•$\overrightarrow{b}$x在R上有极值,则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角范围为[$\frac{π}{3}$,π]; 
④在△ABC中,若cos(2B+C)+2sinAsinB<0,则△ABC为钝角三角形;
 ⑤在△ABC中,若(a2+c2-b2)tanB=$\sqrt{3}$ac,则B=60°.
其中正确命题的序号为①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=4$\sqrt{3}$sin(ωx+$\frac{π}{3}$)(ω>0)在平面直角坐标系中的部分图象如图所示,若∠ABC=90°,则ω=(  )
A.$\frac{π}{4}$B.$\frac{π}{8}$C.$\frac{π}{6}$D.$\frac{π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.甲、乙、丙三部机床独立工作,由一个工人照管,且一个工人不能同时照管两部或两部以上机床,某段时间内,它们不需要工人照管的概率分别为0.9、0.8和0.85,求在这段时间内,
(1)三部机床都不需要工人照管的概率;
(2)一人照管不过来而造成停工的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.“a=1”是“函数f(x)=x2+2ax-2在区间(-∞,-1]上单调递减”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=ex,g(x)=mx+n.
(1)设h(x)=f(x)-g(x).当n=0时,若函数h(x)在(-1,+∞)上没有零点,求m的取值范围;
(2)设函数r(x)=$\frac{1}{f(x)}$+$\frac{nx}{g(x)}$,且n=4m(m>0),求证:当x≥0时,r(x)≥1.

查看答案和解析>>

同步练习册答案