精英家教网 > 高中数学 > 题目详情
17.求函数$y=\frac{1-x}{{(1+{x^2})cosx}}$的导数.

分析 根据导数的运算法则求导即可.

解答 解:${y^'}=\frac{{{{(1-x)}^'}(1+{x^2})cosx-(1-x){{[(1+{x^2})cosx]}^'}}}{{{{(1+{x^2})}^2}{{cos}^2}x}}$,
=$\frac{{-(1+{x^2})cosx-(1-x)[{{(1+{x^2})}^'}cosx+(1+{x^2}){{(cosx)}^'}]}}{{{{(1+{x^2})}^2}{{cos}^2}x}}$,
=$\frac{{-(1+{x^2})cosx-(1-x)[2xcosx-(1+{x^2})sinx]}}{{{{(1+{x^2})}^2}{{cos}^2}x}}$,
=$\frac{{({x^2}-2x-1)cosx+(1-x)(1+{x^2})sinx}}{{{{(1+{x^2})}^2}{{cos}^2}x}}$.

点评 本题考查了导数的运算法则和基本导数公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.设定义在R上的函数f(x),对于任意实数m,n恒有f(m+n)=f(m)f(n),且当x>0时,0<f(x)<1,则不等式f(x2)•f(2x-3)>1的解集是(  )
A.(-∞,-3)B.(-3,1)C.(1,+∞)D.(-∞,-3)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知中心在原点O,焦点在x轴上的椭圆,离心率e=$\frac{1}{2}$,且椭圆过点(1,$\frac{3}{2}$).
(Ⅰ)求椭圆的方程;
(Ⅱ)椭圆左,右焦点分别为F1,F2,过F2的直线l与椭圆交于不同的两点A、B.
(1)求△F1AB面积的最大值;
(2)△F1AB的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线l方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列四个命题:
①如果θ是第二象限角,则sinθ•tanθ<0;
②如果sinθ•tanθ<0,则θ是第二象限角;
③sin1•cos2•tan3>0;
④如果$θ∈(\frac{3π}{2},2π)$,则sin(π+θ)>0
其中正确的是(  )
A.①②③④B.①③C.②③④D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.总体编号为01,02,…19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为01.
  7816   6572   0802   6314   0214   4319   9714   0198
  3204   9234   4936   8200   3623   4869   6938   7181

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=sin(x+θ)+$\sqrt{3}$cos(x+θ)(θ∈[-$\frac{π}{2}$,$\frac{π}{2}}]}$))是偶函数,则θ的值为(  )
A.0B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知$\overrightarrow{a}$,$\overrightarrow{b}$为单位向量,且$\overrightarrow{a}$•($\overrightarrow{a}$-$\overrightarrow{b}$)=$\frac{1}{2}$,则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=4x2-4mx+1,在(-∞,-2)上递减,在(-2,+∞)上递增.则f(x)在[1,2]上的值域为[21,49].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数y=2cos(2x+$\frac{π}{3}$)+3,x∈[0,$\frac{π}{2}$]的值域为[1,4].

查看答案和解析>>

同步练习册答案