精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=sin(x+θ)+$\sqrt{3}$cos(x+θ)(θ∈[-$\frac{π}{2}$,$\frac{π}{2}}]}$))是偶函数,则θ的值为(  )
A.0B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

分析 由题意可得f(-x)=f(x),利用出公式可得:sinx$cos(θ+\frac{π}{3})$=0,上式对于任意实数x∈R都成立,可得cosθ=0,θ∈[-$\frac{π}{2}$,$\frac{π}{2}}]}$],即可得出.

解答 解:∵函数f(x)=sin(x+θ)+$\sqrt{3}$cos(x+θ)(θ∈[-$\frac{π}{2}$,$\frac{π}{2}}]}$])是偶函数,
∴f(-x)=f(x),∴f(-x)=sin(-x+θ)+$\sqrt{3}$cos(-x+θ)=sin(x+θ)+$\sqrt{3}$cos(x+θ),
∴sinxcosθ+$\sqrt{3}$sinxsinθ=0,
∴2sinx$cos(θ+\frac{π}{3})$=0,
上式对于任意实数x∈R都成立,∴cosθ=0,θ∈[-$\frac{π}{2}$,$\frac{π}{2}}]}$],
∴$θ=\frac{π}{6}$.
故选:B.

点评 本题考查了函数的奇偶性、和差公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.“|x|<2”是“x2-x-6<0”的(  )
A.既不充分也不必要条件B.必要不充分条件
C.充要条件D.充分而不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设数列{an}的前n项和为Sn,且a1=1,$\frac{S_n}{n}={a_n}-n+1$.
(1)求数列{an}的通项公式;
(2)设log3bn=log3an+an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.对于函数f(x)=a+$\frac{2}{{{3^x}+1}}$(a∈R)
(1)若a=-1时,证明函数f(x)是奇函数;
(2)判断函数f(x)的单调性并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求函数$y=\frac{1-x}{{(1+{x^2})cosx}}$的导数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=$\frac{{2sin\frac{x}{2}cos\frac{x}{2}-1}}{{\sqrt{3-2cosx-4sin\frac{x}{2}cos\frac{x}{2}}}}$(0≤x≤2π)的值域是 (  )
A.[-$\frac{{\sqrt{2}}}{2},0$]B.[-1,0]C.[-$\sqrt{2},0$]D.[-$\sqrt{3},0$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在直二面角α-AB-β中,P∈α,Q∈β,直线PQ与面α所成角为30°,与β所成角为45°,则异面直线PQ与AB所成角为(  )
A.30°B.60°C.90°D.45°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=$\left\{\begin{array}{l}-{x^2}+4x-3,\;x≤1\\ lnx,\;x>1\end{array}$,若f(x)=a(x-1)有且只有一个实数解,则a的取值范围是(  )
A.[1,2]B.(-∞,0]C.(-∞,0]∪[1,2]D.(-∞,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=4$\sqrt{3}$sin(ωx+$\frac{π}{3}$)(ω>0)在平面直角坐标系中的部分图象如图所示,若∠ABC=90°,则ω=(  )
A.$\frac{π}{4}$B.$\frac{π}{8}$C.$\frac{π}{6}$D.$\frac{π}{12}$

查看答案和解析>>

同步练习册答案