精英家教网 > 高中数学 > 题目详情
12.“|x|<2”是“x2-x-6<0”的(  )
A.既不充分也不必要条件B.必要不充分条件
C.充要条件D.充分而不必要条件

分析 解出不等式“|x|<2”是“x2-x-6<0的范围,再根据必要条件和充分条件的定义进行求解;

解答 解:由|x|<2,解得-2<x<2,
由x2-x-6<0解得-2<x<3,
故“|x|<2”是“x2-x-6<0”的充分而不必要条件,
故选:D.

点评 此题主要考查必要条件和充分条件的定义,及必要条件,充分条件的判断,此类题是高考的热点问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.设焦点在x轴上的椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{{b}^{2}}$=1的离心率e=$\frac{1}{2}$,F,A分别是椭圆的左焦点和右顶点,P是椭圆上任意一点,则$\overrightarrow{PF}$•$\overrightarrow{PA}$的最大值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某品牌空调在4月1日至4月8日举行促销活动,如图的茎叶图表示某专卖店记录的每天销售量情况(单位:台),则销售量的中位数是15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知复数z=(cosθ-isinθ)(1+i),则“z为纯虚数”的一个充分不必要条件是(  )
A.$θ=\frac{π}{4}$B.$θ=\frac{π}{2}$C.$θ=\frac{3π}{4}$D.$θ=\frac{5π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设定义在R上的函数f(x),对于任意实数m,n恒有f(m+n)=f(m)f(n),且当x>0时,0<f(x)<1,则不等式f(x2)•f(2x-3)>1的解集是(  )
A.(-∞,-3)B.(-3,1)C.(1,+∞)D.(-∞,-3)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若f(x)=${e}^{-\frac{1}{x}}$,则$\underset{lim}{t→∞}\frac{f(1-2t)-f(1)}{t}$=-2e-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$彼此不共线,且$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$两两所成的角相等,若|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=1,|$\overrightarrow{c}$|=3,则|$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$|=$\frac{\sqrt{30}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若双曲线C:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线与圆x2+(y-2)2=1相切,则双曲线C的离心率是(  )
A.2B.$\sqrt{2}$C.$\sqrt{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=sin(x+θ)+$\sqrt{3}$cos(x+θ)(θ∈[-$\frac{π}{2}$,$\frac{π}{2}}]}$))是偶函数,则θ的值为(  )
A.0B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

同步练习册答案