精英家教网 > 高中数学 > 题目详情
17.若f(x)=${e}^{-\frac{1}{x}}$,则$\underset{lim}{t→∞}\frac{f(1-2t)-f(1)}{t}$=-2e-1

分析 利用导数的定义对所求变形,得到实际所求,然后求已知函数的导数

解答 解:$\underset{lim}{t→∞}\frac{f(1-2t)-f(1)}{t}$=-2$\underset{lim}{\frac{1}{t}→0}\frac{f(1-\frac{2}{t})-f(1)}{\frac{-2}{t}}$=-2f'(1),
又f(x)=${e}^{-\frac{1}{x}}$,所以f'(x)=(${e}^{-\frac{1}{x}}$)'=$\frac{1}{{x}^{2}}{e}^{-\frac{1}{x}}$,
所以f'(1)=e-1
故答案为:-2e-1

点评 本题考查了导数的定义的运用以及复合函数求导;属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=$\left\{\begin{array}{l}{(1-2a)^{x},x≤1}\\{lo{g}_{a}x+\frac{1}{3},x>1}\end{array}\right.$,对任意实数x1,x2,当x1≠x2时,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,则a的取值范围是(0,$\frac{1}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知平行六面体ABCD-A1B1C1D1中,底面ABCD是边长为2的正方形,侧棱AA1的长为2,∠A1AB=∠A1AD=120°.
求:(1)直线A1C和BB1的夹角的余弦值;
(2)设|A1C|=a,|A1B|=b,|A1D|=c请设计一个算法,当输入实数a,b,c,要求输出这三个数中最大的数,请写出算法并画出程序框图.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=$\sqrt{lo{g}_{2}(x-1)}$的定义域为A,函数g(x)=($\frac{1}{2}$)x,(-1≤x≤0)的值域为B.
(1)求A∩B;
(2)若C={x|a≤x≤2a-1},且C∩B=C,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.“|x|<2”是“x2-x-6<0”的(  )
A.既不充分也不必要条件B.必要不充分条件
C.充要条件D.充分而不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.两圆x2+y2-1=0与x2+y2+3x+9y+2=0的公共弦长为(  )
A.$\frac{{3\sqrt{10}}}{10}$B.$\frac{{3\sqrt{10}}}{5}$C.$\frac{{\sqrt{10}}}{5}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,小方格是边长为1的正方形,一个几何体的三视图如图,则原几何体的体积为(  )
A.$\frac{32π}{3}$B.64+$\frac{32π}{3}$C.16πD.64+$\frac{256π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.数列{an}前n项和为Sn,且an+Sn=-2n-1(n∈N*).
(1)证明数列{an+2}为等比数列;
(2)求数列{an}的通项公式;
(3)若${b_n}={log_2}\frac{1}{{{a_n}+2}}$,证明:$\sum_{k=1}^n{\frac{1}{{{b_k}{b_{k+1}}}}}<1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=$\frac{{2sin\frac{x}{2}cos\frac{x}{2}-1}}{{\sqrt{3-2cosx-4sin\frac{x}{2}cos\frac{x}{2}}}}$(0≤x≤2π)的值域是 (  )
A.[-$\frac{{\sqrt{2}}}{2},0$]B.[-1,0]C.[-$\sqrt{2},0$]D.[-$\sqrt{3},0$]

查看答案和解析>>

同步练习册答案