分析 利用导数的定义对所求变形,得到实际所求,然后求已知函数的导数
解答 解:$\underset{lim}{t→∞}\frac{f(1-2t)-f(1)}{t}$=-2$\underset{lim}{\frac{1}{t}→0}\frac{f(1-\frac{2}{t})-f(1)}{\frac{-2}{t}}$=-2f'(1),
又f(x)=${e}^{-\frac{1}{x}}$,所以f'(x)=(${e}^{-\frac{1}{x}}$)'=$\frac{1}{{x}^{2}}{e}^{-\frac{1}{x}}$,
所以f'(1)=e-1;
故答案为:-2e-1.
点评 本题考查了导数的定义的运用以及复合函数求导;属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{3\sqrt{10}}}{10}$ | B. | $\frac{{3\sqrt{10}}}{5}$ | C. | $\frac{{\sqrt{10}}}{5}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{32π}{3}$ | B. | 64+$\frac{32π}{3}$ | C. | 16π | D. | 64+$\frac{256π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-$\frac{{\sqrt{2}}}{2},0$] | B. | [-1,0] | C. | [-$\sqrt{2},0$] | D. | [-$\sqrt{3},0$] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com