分析 (1)由题意可知:an+Sn=-2n-1,则an+1+Sn+1=-2n-3,两式相减,an+1-an+Sn+1-Sn=-2,整理得an+1=$\frac{1}{2}$an-1,an+1+2=$\frac{1}{2}$(an+2),$\frac{{a}_{n+1}+2}{{a}_{n}+2}$=$\frac{1}{2}$,因此数列{an+2}是首项为a1+2=$\frac{1}{2}$,公比为q=$\frac{1}{2}$的等比数列;
(2)由(1)可知,由等比数列通项公式可知:an+2=(a1+2)qn-1=$\frac{1}{2}$•($\frac{1}{2}$)n-1=$\frac{1}{{2}^{n}}$,因此an=$\frac{1}{{2}^{n}}$-2;
(3)由(2)得${b_n}={log_2}\frac{1}{{{a_n}+2}}$=log22n=n,$\frac{1}{{b}_{n}{b}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,采用“裂项法”即可求得$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+$\frac{1}{{b}_{3}{b}_{4}}$+…+$\frac{1}{{b}_{n}{b}_{n+1}}$=1-$\frac{1}{n+1}$<1,则$\sum_{k=1}^n{\frac{1}{{{b_k}{b_{k+1}}}}}<1$.
解答 解:(1)证明:由an+Sn=-2n-1(n∈N*),
∴an+1+Sn+1=-2n-3,
两式相减,an+1-an+Sn+1-Sn=-2,即an+1-2an=-2,
∴an+1=$\frac{1}{2}$an-1,…(2分)
∴an+1+2=$\frac{1}{2}$(an+2),
∴$\frac{{a}_{n+1}+2}{{a}_{n}+2}$=$\frac{1}{2}$,
当n=1时,a1+S1=-2-1=-3,
∴a1=-$\frac{3}{2}$,
∴数列{an+2}是首项为a1+2=$\frac{1}{2}$,公比为q=$\frac{1}{2}$的等比数列,…(4分)
(2)由(1)可知,根据等比数列的通项公式可知:an+2=(a1+2)qn-1=$\frac{1}{2}$•($\frac{1}{2}$)n-1=$\frac{1}{{2}^{n}}$,
∴an=$\frac{1}{{2}^{n}}$-2;…(6分)
(3)证明:由(2)得${b_n}={log_2}\frac{1}{{{a_n}+2}}$=log22n=n,…(7分)
∴$\frac{1}{{b}_{n}{b}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$…(8分)
∴$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+$\frac{1}{{b}_{3}{b}_{4}}$+…+$\frac{1}{{b}_{n}{b}_{n+1}}$,
=(1-$\frac{1}{2}$)+($\frac{1}{2}$-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{4}$)+…+($\frac{1}{n}$-$\frac{1}{n+1}$),
=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$,
=1-$\frac{1}{n+1}$<1,
即$\sum_{k=1}^n{\frac{1}{{{b_k}{b_{k+1}}}}}<1$.…(10分)
点评 本题考查等比数列的证明,考查等比数列通项公式,考查“裂项法”求数列的前n项和,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | $\frac{2\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | 16 | C. | 32 | D. | 64 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com