精英家教网 > 高中数学 > 题目详情
7.一个几何体的三视图如图.该几何体的各个顶点都在球O的球面上,球O的体积为(  )
A.$\frac{\sqrt{2}}{3}$πB.$\frac{4\sqrt{2}}{3}$πC.$\frac{8\sqrt{2}}{3}$πD.$\frac{10\sqrt{2}}{3}$π

分析 几何体为三棱锥,且三棱锥的一条侧棱与底面垂直,底面为等腰直角三角形,取O为SC的中点,可证OS=OC=OA=OB,由此求得外接球的半径,代入球的体积公式计算.

解答 解:由三视图知:几何体为三棱锥,且三棱锥的一条侧棱与底面垂直,高为2,
底面为等腰直角三角形,如图:SA⊥平面ABC,SA=2,AC的中点为D,
在等腰直角三角形SAC中,取O为SC的中点,∴OS=OC=OA=OB,
∴O为三棱锥外接球的球心,R=$\sqrt{2}$,
∴外接球的体积V=$\frac{4}{3}$π×($\sqrt{2}$)3=$\frac{8\sqrt{2}}{3}$.
故选:C.

点评 本题考查了由三视图求几何体的外接球的体积,判断几何体的特征性质及数据所对应的几何量是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.△ABC中,若a4+b4+c4=2c2(a2+b2),则角C的度数是45°或135°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,已知点A、B的坐标分别是(-3,0),(3,0),点C为线段AB上任一点,P、Q分别以AC和BC为直径的两圆O1,O2的外公切线的切点,求线段PQ的中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知集合A={-2≤x≤3},B={x|m+1≤x≤2m-1}.
(1)若B⊆A,求m的取值集合;
(2)若A⊆B,求m的取值集合;
(3)是否存在实数m,使得A=B?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知抛物线C1;x2=3y与圆C2:x2+(y-3)2=1.
(1)求证:圆C2在抛物线C1内部;
(2)是否存在直线y=2x+b与圆C2和抛物线C1的从左到右的交点为A,B,C,D,使AB=CD?
(3)直线l被圆C2和抛物线C1截成长度相等的三部分,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}满足n2an=(n2-1)an-1(n≥2,n∈N*),a1=2,求an

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知三次函数f(x)=(x-1)(x-2)(x-a)(1<a<2),则$\frac{1}{f′(1)}$+$\frac{4}{f′(2)}$+$\frac{{a}^{2}}{f′(a)}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知sinα=$\frac{4}{5}$,且$\frac{π}{2}<α<π$,求sin(α+$\frac{π}{4}$)、cos(α+$\frac{π}{4}$)、tan(α+$\frac{π}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在△ABC中,∠A,∠B,∠C的对边分别为a,b,c且a2+b2-c2-ab=0,若△ABC的面积为$\frac{\sqrt{3}}{2}c$,则ab的最小值为4.

查看答案和解析>>

同步练习册答案