精英家教网 > 高中数学 > 题目详情
已知定义在R上的函数f(x)在[0,+∞)上单调递增,且对任意的x,y∈R都有f(x+y)=f(x)+f(y).若f(3x)+f(9x-2)>0,则实数x的取值范围为(  )
A、(0,
1
2
)
B、(0,+∞)
C、(-∞,1)
D、(1,+∞)
分析:本题考查的抽象函数的应用,由于f(x+y)=f(x)+f(y),我们不难计算出f(0)=0,并由此进而给出函数f(x)为奇函数,且在R上递增,则f(3x)+f(9x-2)>0可以转化为一个指数不等式,解不等式即可求出满足条件的实数x的取值范围.
解答:解:由函数f(x)在[0,+∞)上单调递增,
且对任意的x,y∈R都有f(x+y)=f(x)+f(y)
f(0)=f(0)+f(0)
∴f(0)=0
∴f(x-x)=f(0)=0=f(x)+f(-x).
即f(x)为奇函数,则f(x)在R单调递增.
∴f(3x)+f(9x-2)>0
可转化为f(3x+9x-2)=f[(3x2+3x-2]>0=f(0)
即(3x2+3x-2>0
解得3x<-2,或3x>1
结合指数函数性质,解得x>0
故选B
点评:本题的解答过程比较复杂,当我们遇到一个抽象函数时,我们要分析其已知条件,凑出一些特殊点的函数值,分析函数的性质,然后对要求的不等式进行转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的函数y=f(x)满足下列条件:
①对任意的x∈R都有f(x+2)=f(x);
②若0≤x1<x2≤1,都有f(x1)>f(x2);
③y=f(x+1)是偶函数,
则下列不等式中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足:f(x)=
f(x-1)-f(x-2),x>0
log2(1-x),       x≤0
  则:
①f(3)的值为
0
0

②f(2011)的值为
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足f(x+1)=-f(x),且x∈(-1,1]时f(x)=
1,(-1<x≤0)
-1,(0<x≤1)
,则f(3)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)是偶函数,对x∈R都有f(2+x)=f(2-x),当f(-3)=-2时,f(2013)的值为(  )
A、-2B、2C、4D、-4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x),对任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函数y=f(x+1)的图象关于直线x=-1对称,则f(2013)=(  )
A、0B、2013C、3D、-2013

查看答案和解析>>

同步练习册答案