精英家教网 > 高中数学 > 题目详情
11.函数$f(x)=\frac{{{e^x}-{e^{-x}}}}{2}$的奇偶性为奇函数.

分析 先看函数的定义域是否关于原点对称,再看f(-x)与f(x)的关系,再根据函数的奇偶性的定义作出判断.

解答 解:函数$f(x)=\frac{{{e^x}-{e^{-x}}}}{2}$的定义域为R,且满足f(-x)=$\frac{{e}^{-x}{-e}^{x}}{2}$=-f(x),
故该函数为奇函数,
故答案为:奇函数.

点评 本题主要考查函数的奇偶性的判断,先看函数的定义域是否关于原点对称,再看f(-x)与f(x)的关系,再根据函数的奇偶性的定义作出判断,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.某企业为解决困难职工的住房问题,决定分批建设保障性住房供给困难职工,首批计划用100万元购买一块土地,该土地可以建造每层1000平方米的楼房一幢,楼房的每平方米建筑费用与建筑高度有关,楼房每升高一层,整层楼每平方米建筑费用提高20元,已知建筑第1层楼房时,每平方米的建筑费用为920元.为了使该幢楼房每平方米的平均费用最低(费用包括建筑费用和购地费用),应把楼房建成几层?此时平均费用为每平方米多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知tan(α+$\frac{π}{4}$)=2,则$\frac{sin2α}{sin2a+co{s}^{2}α}$=$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数y=sin2x-$\sqrt{3}$cos2x的图象的一条对称轴方程为(  )
A.x=$\frac{π}{12}$B.x=-$\frac{π}{12}$C.x=$\frac{π}{6}$D.x=-$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数$f(x)=\frac{1}{lg(x+1)}+\sqrt{2-x}$的定义域为(  )
A.(-1,0)∪(0,2]B.[-2,0)∪(0,2]C.[-2,2]D.(-1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=2x+2ax+b,且$f(1)=\frac{5}{2}$,$f(2)=\frac{17}{4}$.
(Ⅰ)求实数a,b的值并判断函数f(x)的奇偶性;
(Ⅱ)判断函数f(x)在[0,+∞)上的单调性,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,已知双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右顶点为A,O为坐标原点,以A为圆心的圆与双曲线C的某渐近线交于两点P、Q,若∠PAQ=60°且$\overrightarrow{OQ}$=4$\overrightarrow{OP}$,则双曲线C的离心率为(  )
A.$\frac{{2\sqrt{13}}}{5}$B.$\frac{{\sqrt{7}}}{2}$C.$\frac{{2\sqrt{39}}}{9}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知集合A={x|2≤x≤6},B={x|2a≤x≤a+3}
(1)当a=2时,求A∪B
(2)当B⊆A时,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知a=lg3,$b={4^{\frac{1}{3}}}$,c=lg0.3,这三个数的大小关系为(  )
A.b<a<cB.a<b<cC.c<a<bD.c<b<a

查看答案和解析>>

同步练习册答案