【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,以坐标原点为极点,
轴的非负半轴为极轴建立极坐标系,已知曲线
的极坐标方程为
,它在点
处的切线为直线
.
(Ⅰ)求直线
的直角坐标方程;
(Ⅱ)已知点
为椭圆
上一点,求点
到直线
的距离的取值范围.
科目:高中数学 来源: 题型:
【题目】某地政府决定建造一批保障房供给社会,缓解贫困人口的住房问题,计划用1 600万元购得一块土地,在该土地上建造10幢楼房的住宅小区,每幢楼的楼层数相同,且每层建筑面积均为1 000平方米,每平方米的建筑费用与楼层有关,第x层楼房每平方米的建筑费用为(kx+800)元(其中k为常数).经测算,若每幢楼为5层,则该小区每平方米的平均综合费用为1 270元.
注:每平方米平均综合费用=
.
(1) 求k的值;
(2) 问要使该小区楼房每平方米的平均综合费用最低,应将这10幢楼房建成多少层?此时每平方米的平均综合费用为多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某医药研究所开发的一种药,如果成年人按规定的剂量服用,据监测,服药后每毫升中的含药量
(微克)与时间
(小时)之间近似满足如图所示的曲线.(当
时,
).
![]()
(1)写出第一次服药后
与
之间的函数关系式
;
(2)据进一步测定,每毫升血液中含药量不少于
微克时,治疗疾病有效,求服药一次后治疗疾病有效时间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
的定义域是R,对于任意实数
,恒有
,且当
时,
。
(1)求证:
,且当
时,有
;
(2)判断
在R上的单调性;
(3)设集合A=
,B=
,若A∩B=
,求
的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的两个顶点分别为
,焦点在
轴上,离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)点
为
轴上一点,过
作
轴的垂线交椭圆
于不同的两点
,过
作
的垂线交
于点
.求
与
的面积之比.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线
上的动点
满足到点
的距离比到直线
的距离小1.
(1)求曲线
的方程;
(2)动点
在直线
上,过点
分别作曲线
的切线
,切点为
.直线
是否恒过定点,若是,求出定点坐标,若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知A、B、C是△ABC的三个内角,向量m=(-1,
),n=(cosA,sinA),且m·n=1.
(1)求角A;
(2)若
=-3,求tanC.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com