【题目】已知
中,A(1, 3),AB、AC边上的中线所在直线方程分别为
和
,求
各边所在直线方程.
【答案】AB:2y+x-7=0 AC:x-y+2=0 BC:4y-x+1=0
【解析】
试题分析:B点应满足的两个条件是:①B在直线y-1=0上;②BA的中点D在直线x-2y+1=0上.由①可设B(xB,1),进而由②确定xB值,得到B点坐标;同理设出点C的纵坐标,根据中点坐标公式和C在x-2y+1=0上可求出C点坐标,然后利用两点式分别求出三边所在的直线方程即可
试题解析:设B(xB,1)则AB的中点D(
,2)
∵D在中线CD:x-2y+1=0上
∴
22+1=0,
解得xB=5,故B(5,1).
同样,因点C在直线x-2y+1=0上,可以设C为(2yC-1,yC),
根据
=1,解出yC=-1,
所以C(-3,-1).
根据两点式,得直线AB的方程为y-3=
(x-1);
直线BC的方程为y-1=
(x-5);
直线AC的方程为y-3=
(x-1)
化简得△ABC中直线AB:x+2y-7=0,
直线BC:x-4y-1=0,
直线AC:x-y+2=0
科目:高中数学 来源: 题型:
【题目】某网店经营的一种商品进行进价是每件10元,根据一周的销售数据得出周销售量
(件)与单价
(元)之间的关系如下图所示,该网店与这种商品有关的周开支均为25元.
![]()
(1)根据周销售量图写出
(件)与单价
(元)之间的函数关系式;
(2)写出利润
(元)与单价
(元)之间的函数关系式;当该商品的销售价格为多少元时,周利润最大?并求出最大周利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
实数
满足不等式
函数
无极值点.
(1)若“
”为假命题,“
”为真命题,求实数
的取值范围;
(2)已知“
”为真命题,并记为
,且
,若
是
的必要不充分条件,求正整数
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆x2+y2-6x-8y+21=0和直线kx-y-4k+3=0.
(1)若直线和圆总有两个不同的公共点,求k的取值集合
(2)求当k取何值时,直线被圆截得的弦最短,并求这最短弦的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com