精英家教网 > 高中数学 > 题目详情
正三角形ABC的边长为2
3
,将它沿高AD翻折,使点B与点C间的距离为
3
,此时四面体ABCD的外接球的体积为
 
考点:球的体积和表面积
专题:
分析:三棱锥B-ACD的三条侧棱BD⊥AD、DC⊥DA,底面是正三角形,它的外接球就是它扩展为三棱柱的外接球,求出正三棱柱的底面中心连线的中点到顶点的距离,就是球的半径,然后求球的体积即可.
解答: 解:根据题意可知三棱锥B-ACD的三条侧棱BD⊥AD、DC⊥DA,底面是正三角形,它的外接球就是它扩展为三棱柱的外接球,求出三棱柱的底面中心连线的中点到顶点的距离,就是球的半径,而且AD=
(2
3
)
2
-(
3
)
2
=3,
正三棱柱ABC-A1B1C1的中,底面边长为
3

由题意可得:三棱柱上下底面中点连线的中点,到三棱柱顶点的距离相等,说明中心就是外接球的球心,
∴正三棱柱ABC-A1B1C1的外接球的球心为O,外接球的半径为r,
球心到底面的距离为
3
2

底面中心到底面三角形的顶点的距离为:
2
3
×
3
2
×
3
=1
∴球的半径为r=
(
3
2
)
2
+12
=
13
2

四面体ABCD外接球体积为:
3
r3
=
3
×(
13
2
)
3
=
13
13
π
6

故答案为:
13
13
π
6
点评:本题考查空间想象能力,计算能力;三棱柱上下底面中点连线的中点,到三棱柱顶点的距离相等,说明中心就是外接球的球心,是本题解题的关键,仔细观察和分析题意,是解好数学题目的前提.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知α∈(0,π),sinα+cosα=
1
5
,求值:
(1)sinαcosα
(2)sinα-cosα
(3)tan(π-α)

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,圆C的方程为x2+y2-4x=0.若直线y=k(x+1)上存在一点P,使过P所作的圆的两条切线相互垂直,则实数k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设点P是函数f(x)=sinωx的图象C的一个对称中心,若点P到图象C的对称轴的最小值是
π
8
,则f(x)的最小正周期是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角三角形ABC中,C=90°,AC=6,BC=4.若点D满足
AD
=-2
DB
,则|
CD
|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

1
0
(x2+2x+1)dx=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(ωx+φ)的图象如图所示,则f(2)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合P={x|
x
x-1
≤0},Q={x||x-
3
2
|≤
3
2
},那么“m∈P”是“m∈Q”的(  )
A、充分不必要条件
B、必要而不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

在复平面内,复数
-3+i
2+i
对应的点位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

同步练习册答案