精英家教网 > 高中数学 > 题目详情

当x∈[-2,0]时,函数y=3x+1-2的值域是________.

[-,1]
分析:由x∈[-2,0],知-1≤x+1≤1,故≤3x+1≤3,由此能够求出函数y=3x+1-2的值域.
解答:∵x∈[-2,0],∴-1≤x+1≤1,
≤3x+1≤3,
∴-≤3x+1-2≤1,
∴函数y=3x+1-2的值域是[-,1].
故答案为:[-,1].
点评:本题考查指数函数的值域的求法,解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)是定义在R上的偶函数,对任意的x∈R,都有f(2-x)=f(x+2),且当x∈[-2,0]时,f(x)=(
1
2
x-1,若关于x的方程f(x)-loga(x+2)=0(a>1)在区间(-2,6)内恰有三个不同实根,则实数a的取值范围是
34
,2]
34
,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=lnx,g(x)=x2-x,
(1)求函数h(x)=f(x)-g(x)的单调增区间;
(2)当x∈[-2,0]时,g(x)≤2c2-c-x3恒成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(-
3
cosmx,0),向量
b
=(sinmx,0),函数f(x)=|
a
|
2
+
a
b
的最小正周期为2,其中m>0.
(Ⅰ)求m的值;
(Ⅱ)求当x∈[-2,0]时f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•松江区一模)设f(x)是定义在R上的函数,对x∈R都有f(-x)=f(x),f(x)•f(x+2)=10,且当x∈[-2,0]时,f(x)=(
1
2
)x-1
,若在区间(-2,6]内关于x的方程f(x)-loga(x+2)=0(a>1)恰有3个不同的实数根,则a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•南宁模拟)设f(x)是定义在R上的偶函数,对任意x∈R,都有f(x)=f(x+4),且当x∈[-2,0]时,f(x)=(
1
2
x-1,若在区间(-2,6]内关于x的方程f(x)-loga(x+2)=0(a>1)恰有三个不同的实数根,则a的取值范围为(  )

查看答案和解析>>

同步练习册答案