精英家教网 > 高中数学 > 题目详情

【题目】某工厂有甲,乙两个车间生产同一种产品,,甲车间有工人人,乙车间有工人人,为比较两个车间工人的生产效率,采用分层抽样的方法抽取工人,甲车间抽取的工人记作第一组,乙车间抽取的工人记作第二组,并对他们中每位工人生产完成的一件产品的事件(单位:)进行统计,按照进行分组,得到下列统计图.

分别估算两个车间工人中,生产一件产品时间少于的人数

分别估计两个车间工人生产一件产品时间的平均值,并推测车哪个车间工人的生产效率更高?

从第一组生产时间少于的工人中随机抽取人,记抽取的生产时间少于的工人人数为随机变量,求的分布列及数学期望.

【答案】60,300;乙车间工人生产效率更高;见解析.

【解析】

)由图表分别计算出两个车间生产一件产品时间少于的人数;

)分别计算两个车间工人生产一件产品时间的平均值,从而得到结果;

可取值为.计算出相应的概率值,得到分布列与期望.

)由题意得,第一组工人人,其中在内(不含)生产完成一件产品的有

甲车间工人中生产一件产品时间少于的人数为(人)

第二组工人人. 其中在内(不含)生产完成一件产品的有

乙车间工人中生产一件产品时间少于的人数为(人)

)第一组平均时间为.

第二组平均时间为.

乙车间工人生产效率更高;

)由题意得,第一组生产时间少于的工人有人,从中抽取人,其中生产时间少于的有人.

可取值为.

.

的分布列为:

数学期望.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面是菱形,.

1)证明:平面平面

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某乐园按时段收费,收费标准为:每玩一次不超过小时收费10元,超过小时的部分每小时收费元(不足小时的部分按小时计算).现有甲、乙二人参与但都不超过小时,甲、乙二人在每个时段离场是等可能的。为吸引顾客,每个顾客可以参加一次抽奖活动。

(1) 表示甲乙玩都不超过小时的付费情况,求甲、乙二人付费之和为44元的概率;

(2)抽奖活动的规则是:顾客通过操作按键使电脑自动产生两个[01]之间的均匀随机数,并按如右所示的程序框图执行.若电脑显示中奖,则该顾客中奖;若电脑显示谢谢,则不中奖,求顾客中奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】槟榔原产于马来西亚,中国主要分布在云南、海南及台湾等热带地区,在亚洲热带地区广泛栽培.槟榔是重要的中药材,在南方一些少数民族还有将果实作为一种咀嚼嗜好品,但其被世界卫生组织国际癌症研究机构列为致癌物清单Ⅰ类致癌物.云南某民族中学为了解两个少数民族班学生咀嚼槟榔的情况,分别从这两个班中随机抽取5名同学进行调查,将他们平均每周咀嚼槟榔的颗数作为样本绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).

(1)你能否估计哪个班级学生平均每周咀嚼槟榔的颗数较多?

(2)从班的样本数据中随机抽取一个不超过19的数据记为,从班的样本数据中随机抽取一个不超过21的数据记为,求的概率;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆Cx2+y22x4y+m0.

1)若圆C与直线lx+2y40相交于MN两点,且|MN|,求m的值;

2)在(1)成立的条件下,过点P21)引圆的切线,求切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古达数学名著《九章算术-商功》中阐述:“斜解立方,得两堑堵,斜解堑堵,其一为阳马,一为鳖觸,阳马居二,鳖属居一.不易之率也。合两鳖觸三而一,验之以基,其形露矣,”若称为“阳马”的某几何体的三视图如图所示 图中网格纸上小正方形的边长为. 则对该儿何体描述:

①四个侧面首饰直角三角形

②最长的侧棱长为

③四个侧面中有三个侧面是全等的直角三角形

④外接球的表面积为

其中正确的个数为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据指令),机器人在平面上能完成下列动作,先原地旋转弧度为正时,按逆时针方向旋转为负时,按顺时针方向旋转),再朝其面对的方向沿直线行走距离r

1)现机器人在平面直角坐标系的坐标原点,且面对x轴正方向,试给机器人下一个指令,使其移动到点

2)机器人在完成该指令后,发现在点处有一小球,正向坐标原点作匀速直线滚动,已知小球滚动的速度为机器人直线行走速度的2倍,若忽略机器人原地旋转所需的时间,问机器人最快可在何处截住小球?并给出机器人截住小球所需的指令?(结果用反三角函数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四面体A-BCD中,有两条棱的长为,其余棱的长度都为1

1)若,且,求二面角A-BC-D的余弦值;

2)求a的取值范围,使得这样的四面体是存在的;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的渐近线方程为,一个焦点为

1)求双曲线的方程;

2)过双曲线上的任意一点,分别作这两条渐近线的平行线与这两条渐近线得到四边形,证明四边形的面积是一个定值;

3)设直线在第一象限内与渐近线所围成的三角形绕着轴旋转一周所得几何体的体积.

查看答案和解析>>

同步练习册答案