【题目】已知圆C:x2+y2﹣2x﹣4y+m=0.
(1)若圆C与直线l:x+2y﹣4=0相交于M、N两点,且|MN|
,求m的值;
(2)在(1)成立的条件下,过点P(2,1)引圆的切线,求切线方程.
科目:高中数学 来源: 题型:
【题目】从10种不同的作物种子中选出6种分别放入6个不同的瓶子中,每瓶不空,如果甲、乙两种种子都不许放入第一号瓶子内,那么不同的放法共有( )
A.
种B.
种C.
种D.
种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线
:
的左、右焦点分别为
、
,
为坐标原点,
是双曲线在第一象限上的点,直线
交双曲线
左支于点
,直线
交双曲线
右支于点
,若
,且
,则双曲线
的渐近线方程为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在直角坐标系中,以原点为极点,
轴的正半轴为极轴建立极坐标系,已知曲线
:
,过点
的直线
的参数方程为:
(
为参数),直线
与曲线
分别交于
、
两点.
(1)写出曲线
的直角坐标方程和直线
的普通方程;
(2)求线段
的长和
的积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点F是抛物线C:y2=2px(p>0)的焦点,若点P(x0,4)在抛物线C上,且
.
(1)求抛物线C的方程;
(2)动直线l:x=my+1(m
R)与抛物线C相交于A,B两点,问:在x轴上是否存在定点D(t,0)(其中t≠0),使得kAD+kBD=0,(kAD,kBD分别为直线AD,BD的斜率)若存在,求出点D的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂有甲,乙两个车间生产同一种产品,,甲车间有工人
人,乙车间有工人
人,为比较两个车间工人的生产效率,采用分层抽样的方法抽取工人,甲车间抽取的工人记作第一组,乙车间抽取的工人记作第二组,并对他们中每位工人生产完成的一件产品的事件(单位:
)进行统计,按照
进行分组,得到下列统计图.
![]()
分别估算两个车间工人中,生产一件产品时间少于
的人数
分别估计两个车间工人生产一件产品时间的平均值,并推测车哪个车间工人的生产效率更高?
从第一组生产时间少于
的工人中随机抽取
人,记抽取的生产时间少于
的工人人数为随机变量
,求
的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
的倾斜角为
,且经过点
.以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线
,从原点O作射线交
于点M,点N为射线OM上的点,满足
,记点N的轨迹为曲线C.
(Ⅰ)求出直线
的参数方程和曲线C的直角坐标方程;
(Ⅱ)设直线
与曲线C交于P,Q两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,AB是圆柱
的一条母线,已知BC过底面圆的圆心O,D是圆O上不与点B、C重合的任意一点,![]()
![]()
:
![]()
(1)求直线AC与平面ABD所成角的大小;
(2)求点B到平面ACD的距离;
(3)将四面体ABCD绕母线AB旋转一周,求由
旋转而成的封闭几何体的体积;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线E:
焦点F,过点F且斜率为2的直线与抛物线交于A、B两点,且
.
(1)求抛物线E的方程;
(2)设O是坐标原点,P,Q是抛物线E上分别位于x轴两侧的两个动点,且![]()
①证明:直线PQ必过定点,并求出定点G的坐标;
②过G作PQ的垂线交抛物线于C,D两点,求四边形PCQD面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com