精英家教网 > 高中数学 > 题目详情

【题目】我国古达数学名著《九章算术-商功》中阐述:“斜解立方,得两堑堵,斜解堑堵,其一为阳马,一为鳖觸,阳马居二,鳖属居一.不易之率也。合两鳖觸三而一,验之以基,其形露矣,”若称为“阳马”的某几何体的三视图如图所示 图中网格纸上小正方形的边长为. 则对该儿何体描述:

①四个侧面首饰直角三角形

②最长的侧棱长为

③四个侧面中有三个侧面是全等的直角三角形

④外接球的表面积为

其中正确的个数为( )

A. B. C. D.

【答案】A

【解析】

由三视图还原几何体,根据长度关系依次验证各个选项,可得正确结果.

由三视图还原几何体,如下图所示:

由三视图可知:,且

,可知为直角三角形;

,可知,得为直角三角形;

,可知,得为直角三角形;

可知四个侧面均为直角三角形,①正确;

②由图可知,最长侧棱为,且,②正确;

三边长为:三边长为:

三边长为:三边长为:

可知四个侧面均不相同,③错误;

④外接球球心中点,则,则外接球表面积为:,④正确.

本题正确选项:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数),.

(1)当时,求函数的极小值;

(2)若当时,关于的方程有且只有一个实数解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的方程为是椭圆上的一点,且在第一象限内,过且斜率等于-1的直线与椭圆交于另一点,点关于原点的对称点为

(1)证明:直线的斜率为定值;

(2)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“科技引领,布局未来”科技研发是企业发展的驱动力量。年,某企业连续年累计研发投入搭亿元,我们将研发投入与经营投入的比值记为研发投入占营收比,这年间的研发投入(单位:十亿元)用右图中的折现图表示,根据折线图和条形图,下列结论错误的使( )

A. 年至年研发投入占营收比增量相比年至年增量大

B. 年至年研发投入增量相比年至年增量小

C. 该企业连续年研发投入逐年增加

D. 该企业来连续年来研发投入占营收比逐年增加

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂有甲,乙两个车间生产同一种产品,,甲车间有工人人,乙车间有工人人,为比较两个车间工人的生产效率,采用分层抽样的方法抽取工人,甲车间抽取的工人记作第一组,乙车间抽取的工人记作第二组,并对他们中每位工人生产完成的一件产品的事件(单位:)进行统计,按照进行分组,得到下列统计图.

分别估算两个车间工人中,生产一件产品时间少于的人数

分别估计两个车间工人生产一件产品时间的平均值,并推测车哪个车间工人的生产效率更高?

从第一组生产时间少于的工人中随机抽取人,记抽取的生产时间少于的工人人数为随机变量,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,矩形,将矩形折叠,使O点落在线段上,设折痕所在直线的斜率为k,则k的取值范围是( 

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法错误的是( )

A. 在回归模型中,预报变量的值不能由解释变量唯一确定

B. 若变量满足关系,且变量正相关,则也正相关

C. 在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高

D. 以模型去拟合一组数据时,为了求出回归方程,设,将其变换后得到线性方程,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在长方体中,下列计算结果一定不等于0的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于旋转体的体积,有如下的古尔丁(guldin)定理:平面上一区域D绕区域外一直线(区域D的每个点在直线的同侧,含直线上)旋转一周所得的旋转体的体积,等于D的面积与D的几何中心(也称为重心)所经过的路程的乘积.利用这一定理,可求得半圆盘,绕直线x旋转一周所形成的空间图形的体积为_____

查看答案和解析>>

同步练习册答案