【题目】正三角形
的边长为
,将它沿高
折叠,使点
与点
间的距离为
,则四面体
外接球的表面积为( )
A.
B.
C.
D. ![]()
科目:高中数学 来源: 题型:
【题目】根据指令
(
,
),机器人在平面上能完成下列动作,先原地旋转弧度
(
为正时,按逆时针方向旋转
,
为负时,按顺时针方向旋转
),再朝其面对的方向沿直线行走距离r;
(1)现机器人在平面直角坐标系的坐标原点,且面对x轴正方向,试给机器人下一个指令,使其移动到点
;
(2)机器人在完成该指令后,发现在点
处有一小球,正向坐标原点作匀速直线滚动,已知小球滚动的速度为机器人直线行走速度的2倍,若忽略机器人原地旋转所需的时间,问机器人最快可在何处截住小球?并给出机器人截住小球所需的指令?(结果用反三角函数表示)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线
的渐近线方程为
,一个焦点为
.
![]()
(1)求双曲线
的方程;
(2)过双曲线
上的任意一点
,分别作这两条渐近线的平行线与这两条渐近线得到四边形
,证明四边形
的面积是一个定值;
(3)设直线
与![]()
在第一象限内与渐近线
所围成的三角形
绕着
轴旋转一周所得几何体的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,
为椭圆的左、右焦点,过右焦点
的直线与椭圆交于
两点,且
的周长为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若点A是第一象限内椭圆上一点,且在
轴上的正投影为右焦点
,过点
作直线
分别交椭圆于
两点,当直线
的倾斜角互补时,试问:直线
的斜率是否为定值;若是,请求出其定值;否则,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两直线方程
与
,点
在
上运动,点
在
上运动,且线段
的长为定值
.
(Ⅰ)求线段
的中点
的轨迹方程;
(Ⅱ)设直线
与点
的轨迹相交于
,
两点,
为坐标原点,若
,求原点
的直线
的距离的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数
与烧开一壶水所用时间
的一组数据,且作了一定的数据处理(如下表),得到了散点图(如下图).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
表中
,
.
![]()
(1)根据散点图判断,
与
哪一个更适宜作烧水时间
关于开关旋钮旋转的弧度数
的回归方程类型?(不必说明理由)
(2)根据判断结果和表中数据,建立
关于
的回归方程;
(3)若单位时间内煤气输出量
与旋转的弧度数
成正比,那么,利用第(2)问求得的回归方程知
为多少时,烧开一壶水最省煤气?
附:对于一组数据
,其回归直线
的斜率和截距的最小二乘法估计值分别为
,![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的方程为
,圆
与
轴相切于点
,与
轴正半轴相交于
、
两点,且
,如图1.
![]()
(1)求圆
的方程;
(2)如图1,过点
的直线
与椭圆
相交于
、
两点,求证:射线
平分
;
(3)如图2所示,点
、
是椭圆
的两个顶点,且第三象限的动点
在椭圆
上,若直线
与
轴交于点
,直线
与
轴交于点
,试问:四边形
的面积是否为定值?若是,请求出这个定值,若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示多面体
,其底面
为矩形且
,四边形
为平行四边形,点
在底面
内的投影恰好是
的中点.
![]()
(1)已知
为线段
的中点,证明:
平面
;
(2)若二面角
大小为
,求直线
与平面
所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com