分析 (1)由OP⊥平面BCD得出BC⊥OP,结合BC⊥CD得出BC⊥平面PCD,故而BC⊥PD;
(2)以O为原点建立坐标系,求出两平面的法向量,根据法向量的夹角得出二面角的大小.
解答
证明:(1)∵OP⊥平面BCD,BC?平面BCD,
∴OP⊥BC,又BC⊥CD,CD?平面PCD,OP?平面PCD,OP∩CD=O,
∴BC⊥平面PCD,又PD?平面PCD,
∴BC⊥PD.
(2)∵PD⊥BC,PD⊥PB,∴PD⊥平面PBC,
∴PD⊥PC,∴PC=$\sqrt{C{D}^{2}-P{D}^{2}}$=2$\sqrt{6}$,∴PO=$\frac{PD•PC}{CD}$=2$\sqrt{2}$,OD=$\sqrt{P{D}^{2}-O{P}^{2}}$=2,OC=4.
以O为原点,以平行于BC的直线为x轴,以OC为y轴,以OP为z轴建立空间直角坐标系,
则O(0,0,0),P(0,0,2$\sqrt{2}$),D(0,-2,0),C(0,4,0),B(2$\sqrt{3}$,4,0),M(0,2,$\sqrt{2}$),
∴$\overrightarrow{DB}$=(2$\sqrt{3}$,6,0),$\overrightarrow{DM}$=(0,4,$\sqrt{2}$),
设平面DBM的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{DB}=0}\\{\overrightarrow{n}•\overrightarrow{DM}=0}\end{array}\right.$,即$\left\{\begin{array}{l}{2\sqrt{3}x+6y=0}\\{4y+\sqrt{2}z=0}\end{array}\right.$,
取x=$\sqrt{3}$,得$\overrightarrow{n}$=($\sqrt{3}$,-1,2$\sqrt{2}$),
∵BC⊥平面PCD,∴$\overrightarrow{CB}$=(2$\sqrt{3}$,0,0)为平面CDM的一个法向量,
cos<$\overrightarrow{n},\overrightarrow{CB}$>=$\frac{\overrightarrow{n}•\overrightarrow{CB}}{|\overrightarrow{n}||\overrightarrow{CB}|}$=$\frac{1}{2}$.
∴二面角B-DM-C的大小为$\frac{π}{3}$.
点评 本题考查了线面垂直的判定与性质,二面角的计算,空间向量的应用,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 向右平移$\frac{π}{6}$个单位长度 | B. | 向左平移$\frac{π}{6}$个单位长度 | ||
| C. | 向右平移$\frac{π}{12}$个单位长度 | D. | 向左平移$\frac{π}{12}$个单位长度 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com