若对任意的
,均有
成立,则称函数
为函数
到函数
在区间
上的“折中函数”.已知函数![]()
,且
是
到
在区间
上的“折中函数”,则实数
的取值范围为 ▲ .
科目:高中数学 来源: 题型:
| 1 |
| n(an+3) |
| t |
| 36 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| 1 | n(an+3) |
查看答案和解析>>
科目:高中数学 来源:2013届四川成都七中高二下学期期中考试文科数学试卷(解析版) 题型:解答题
设
,![]()
(1)若
在
上无极值,求
值;
(2)求
在
上的最小值
表达式;
(3)若对任意的
,任意的
,均有
成立,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
数列
的前n项和为
,点
均在函数y=-x+9的图像上.
(1)求数列
的通项公式和数列
的前n项的和.
(2)设
, 求数列
的前
项和![]()
(3)设![]()
(
),是否存在最大整数
,使得对任意的
,均有
成立,若存在,求出
值;若不存在,请说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com