精英家教网 > 高中数学 > 题目详情

【题目】已知全集U为R,集合A={x|0<x≤2},B={x|x<﹣3,或x>1}
求:(I)A∩B;
(II)(CUA)∩(CUB);
(III)CU(A∪B).

【答案】解:如图: (I)A∩B={x|1<x≤2};
(II)CUA={x|x≤0或x>2},CUB={x|﹣3≤x≤1}
(CUA)∩(CUB)={x|﹣3≤x≤0};
(III)A∪B={x|x<﹣3或x>0},CU(A∪B)={x|﹣3≤x≤0}
【解析】本题为集合的运算问题,结合数轴有集合运算的定义求解即可.
【考点精析】根据题目的已知条件,利用交、并、补集的混合运算的相关知识可以得到问题的答案,需要掌握求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足an+1=2an+n﹣1,且a1=1.
(Ⅰ)求证:{an+n}为等比数列;
(Ⅱ)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为方便市民休闲观光,市政府计划在半径为200米,圆心角为120°的扇形广场内(如图所示),沿△ABC边界修建观光道路,其中A、B分别在线段CP、CQ上,且A、B两点间距离为定长 米.

(1)当∠BAC=45°时,求观光道BC段的长度;
(2)为提高观光效果,应尽量增加观光道路总长度,试确定图中A、B两点的位置,使观光道路总长度达到最长?并求出总长度的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解关于x的不等式(a2﹣4)x2+4x﹣1>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数, 是自然对数的底数),曲线在点处的切线与轴平行.

1)求的值;

2)求的单调区间;

3)设,其中的导函数.证明:对任意

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)为奇函数,g(x)为偶函数,且f(x)+g(x)=2log2(1﹣x).
(1)求f(x)及g(x)的解析式;
(2)求g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x+2ax+b , 且
(Ⅰ)求实数a,b的值并判断函数f(x)的奇偶性;
(Ⅱ)判断函数f(x)在[0,+∞)上的单调性,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个命题:
①已知M={(x,y)| =3},N={(x,y)|ax+2y+a=0}且M∩N=,则a=﹣6;
②已知点A(x1 , y1),B(x2 , y2),则以AB为直径的圆的方程是(x﹣x1)(x﹣x2)+(y﹣y1)(y﹣y2)=0;
=1(a≠b)表示焦点在x轴上的椭圆;
④已知抛物线y2=2px(p>0)的焦点弦AB的两端点坐标分别为A(x1 , y2),B(x2 , y2),则 =﹣4
其中的真命题是 . (把你认为是真命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,且的离心率为.

(1)求的方程;

(2)过的顶点作两条互相垂直的直线与椭圆分别相交于两点.若的角平分线方程为,求的面积及直线的方程.

查看答案和解析>>

同步练习册答案