精英家教网 > 高中数学 > 题目详情
已知点F是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的右焦点,若过点F且倾斜角为60°的直线与双曲线的右支有两个交点,则该双曲线的离心率e的取值范围是(  )
A.(1,2)B.(1,3)C.(1,1+
2
D.(2,1+
2
∵过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)右焦点F且倾斜角为60°的直线与双曲线的右支有两个交点,
∴该双曲线的一条渐近线y=
b
a
x的斜率k=
b
a
<tan60°=
3

b2
a2
<3,又b2=c2-a2,e=
c
a

c2-a2
a2
<3,
c2
a2
<4,即e2<4,又e>1,
∴1<e<2.
故选A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

设F1、F2是双曲线
x2
16
-
y2
20
=1
的左右焦点,点P在双曲线上,若点P到左焦点F1的距离等于9,则点P到右准线的距离(  )
A.
2
3
B.
34
3
C.
2
3
34
3
D.
51
2
3
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线l:x+by+2=0与双曲线
x2
4
-
y2
3
=1
只有一个公共点,则直线l有(  )
A.1条B.2条C.3条D.4条

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设集合A={(x,y)|x2-
y2
36
=1},B={(x,y)|y=3x}
,则A∩B的子集的个数是(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过点(1,0)作倾斜角为
3
的直线与y2=4x交于A、B,则AB的弦长为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设F1,F2分别是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦点,若双曲线右支上存在一点P,使(
OP
+
OF2
)•
F2P
=0
,O为坐标原点,且|
PF1
|=
3
|
PF2
|
,则该双曲线的离心率为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线的左右焦点分别为F1、F2,点P在双曲线的右支上,且|PF1|=4|PF2|,则此双曲线的离心率e的取值范围为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

关于双曲线
x2
9
-
y2
16
=-1,有以下说法:
①实轴长为6;
②双曲线的离心率是
5
4

③焦点坐标为(±5,0);
④渐近线方程是y=±
4
3
x,
⑤焦点到渐近线的距离等于3.
正确的说法是______.(把所有正确的说法序号都填上)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线
y2
t2
-
x2
3
=1(t>0)
的一个焦点与抛物线y=
1
8
x2
的焦点重合,则此双曲线的离心率为(  )
A.2B.
3
C.3D.4

查看答案和解析>>

同步练习册答案