精英家教网 > 高中数学 > 题目详情
(2013•山东)△ABC的内角A、B、C的对边分别是a、b、c,若B=2A,a=1,b=
3
,则c=(  )
分析:利用正弦定理列出关系式,将B=2A,a,b的值代入,利用二倍角的正弦函数公式化简,整理求出cosA的值,再由a,b及cosA的值,利用余弦定理即可求出c的值.
解答:解:∵B=2A,a=1,b=
3

∴由正弦定理
a
sinA
=
b
sinB
得:
1
sinA
=
3
sinB
=
3
sin2A
=
3
2sinAcosA

∴cosA=
3
2

由余弦定理得:a2=b2+c2-2bccosA,即1=3+c2-3c,
解得:c=2或c=1(经检验不合题意,舍去),
则c=2.
故选B
点评:此题考查了正弦、余弦定理,二倍角的正弦函数公式,熟练掌握定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•山东)已知函数f(x)为奇函数,且当x>0时,f(x)=x2+
1
x
,则f(-1)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•山东)函数y=sin(2x+φ)的图象沿x轴向左平移
π
8
个单位后,得到一个偶函数的图象,则φ的一个可能的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•山东)设正实数x,y,z满足x2-3xy+4y2-z=0.则当
xy
z
取得最大值时,
2
x
+
1
y
-
2
z
的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•山东)设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1.
(1)求数列{an}的通项公式;
(2)设数列{bn}的前n项和为TnTn+
an+12n
(λ为常数).令cn=b2n(n∈N)求数列{cn}的前n项和Rn

查看答案和解析>>

同步练习册答案