精英家教网 > 高中数学 > 题目详情

【题目】已知在平面直角坐标系中, 为坐标原点,曲线 为参数),在以平面直角坐标系的原点为极点, 轴的正半轴为极轴,取相同单位长度的极坐标系,直线 .

(Ⅰ)求曲线的普通方程和直线的直角坐标方程;

(Ⅱ)曲线上恰好存在三个不同的点到直线的距离相等,分别求出这三个点的极坐标.

【答案】(I) ;(II): .

【解析】试题分析:(1)平方相加消去参数即可得到曲线的普通方程,利用两角和的正弦公式极坐标与直角坐标互化求出直线的直角坐标方程;(2)求出圆的圆心与半径求出三个点的直角坐标,然后利用互化公式可求解这三点的极坐标.

试题解析:(Ⅰ)曲线

可得:

曲线的普通方程 .

直线 .

直线的直角坐标方程: .

(Ⅱ)∵圆的圆心半径为2,圆心到直线的距离为1,

∴这三个点在平行直线上,如图:直线的距离为1.

.

可得

两个交点

解得

这三个点的极坐标分别为: .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的短轴端点到右焦点的距离为2.

求椭圆的方程;

过点的直线交椭圆两点,交直线于点,若 ,求证: 为定值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)是R上的偶函数,且当x≤0时,f(x)=log (1﹣x)+x.
(1)求f(1)的值;
(2)求函数y=f(x)的表达式,并直接写出其单调区间(不需要证明);
(3)若f(lga)+2<0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax﹣1(a>0,且a≠1),当x∈(0,+∞)时,f(x)>0,且函数g(x)=f(x+1)﹣4的图象不过第二象限,则a的取值范围是( )
A.(1,+∞)
B.
C.(1,3]
D.(1,5]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn , 且a2=3,S5=25.
(1)求数列{an}的通项公式an
(2)设数列{ }的前n项和为Tn , 是否存在k∈N* , 使得等式2﹣2Tk= 成立,若存在,求出k的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x﹣a|+|x﹣5|.
(1)当a=1时,求f(x)的最小值;
(2)如果对任意的实数x,都有f(x)≥1成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC,三角形VAB为等边三角形,AC⊥BC且 AC=BC= ,O、M分别为AB和VA的中点.

(1)求证:VB∥平面MOC;
(2)求直线MC与平面VAB所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个口袋中装有个红球个白球,一次摸奖从中摸两个球,两个球颜色不同则为中奖.

(1)用表示一次摸奖中奖的概率

(2)若,设三次摸奖(每次摸奖后球放回)恰好有次中奖,求的数学期望

(3)设三次摸奖(每次摸奖后球放回)恰好有一次中奖的概率,当取何值时, 最大?

查看答案和解析>>

同步练习册答案