分析 (1)以A为原点,AB为x轴,AC为y轴,AA1为z轴,建立空间直角坐标系,利用向量法能求出点C1到平面AB1C的距离.
(2)求出平面AB1C的法向量和平面BB1的法向量,利用向量法能求出二面角B-B1C-A的余弦值.
解答 解:(1)∵在直三棱柱ABC-A1B1C1中,∠BAC=90°,
AB=BB1=1,直线B1C与平面ABC成30°的角,![]()
∴∠BCB1=30°,∴B1C=2,BC=$\sqrt{4-1}$=$\sqrt{3}$,AC=$\sqrt{3-1}$=$\sqrt{2}$,
以A为原点,AB为x轴,AC为y轴,AA1为z轴,建立空间直角坐标系,
A(0,0,0),C(0,$\sqrt{2}$,0),B1(1,0,1),C1(0,$\sqrt{2}$,1),
$\overrightarrow{A{B}_{1}}$=(1,0,1),$\overrightarrow{AC}$=(0,$\sqrt{2}$,0),$\overrightarrow{A{C}_{1}}$=(0,$\sqrt{2},1$),
设平面AB1C的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{A{B}_{1}}=x+z=0}\\{\overrightarrow{n}•\overrightarrow{AC}=\sqrt{2}y=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,0,-1),
∴点C1到平面AB1C的距离d=$\frac{|\overrightarrow{A{C}_{1}}•\overrightarrow{n}|}{|\overrightarrow{n}|}$=$\frac{1}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$.
(2)平面AB1C的法向量$\overrightarrow{n}$=(1,0,-1),
B(1,0,0),$\overrightarrow{B{B}_{1}}$=(0,0,1),$\overrightarrow{BC}$=(-1,$\sqrt{2},0$),
设平面BB1的法向量为$\overrightarrow{m}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{B{B}_{1}}=c=0}\\{\overrightarrow{m}•\overrightarrow{BC}=-a+\sqrt{2}b=0}\end{array}\right.$,
取b=1,得$\overrightarrow{m}$=($\sqrt{2},1,0$),
设二面角B-B1C-A的平面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{\sqrt{2}}{\sqrt{2}•\sqrt{3}}$=$\frac{\sqrt{3}}{3}$,
∴二面角B-B1C-A的余弦值为$\frac{\sqrt{3}}{3}$.
点评 本题考查点到平面的距离的求法,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|0≤x<2 } | B. | {x|0<x<2} | C. | {x|0≤x<l} | D. | {x|0<x<1} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π-2}{4}$ | B. | $\frac{π}{2}$-4 | C. | $\frac{π-1}{4}$ | D. | $\frac{π-4}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 既不充分也不必要条件 | D. | 充分必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com