精英家教网 > 高中数学 > 题目详情
20.复数z=$\frac{2+mi}{1+i}$(m∈R)是纯虚数,则m=-2.

分析 利用复数的运算法则、纯虚数的定义即可得出.

解答 解:$\frac{2+mi}{1+i}=\frac{{({2+mi})({1-i})}}{2}=\frac{{2+m+({m-2})i}}{2}$为纯虚数,
∴$\frac{2+m}{2}$=0,$\frac{m-2}{2}$≠0,解得m=-2.
故答案为:-2.

点评 本题考查了复数的运算法则、纯虚数的定义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知实数a,b,则“a<b”是“a2<b2”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.定义在R上的函数f(x)满足$f({x+2})=\frac{1}{2}f(x)$,当x∈[0,2)时,$f(x)=\left\{{\begin{array}{l}{\frac{1}{2}-2{x^2},0≤x<1}\\{-{2^{1-|{\frac{3}{2}-x}|}},1≤x<2}\end{array}}\right.$.函数g(x)=lnx-m.若任意的x1∈[-4,-2),均存在${x_2}∈[{{e^{-1}},{e^2}}]$使得不等式f(x1)-g(x2)≥0恒成立,则实数m的取值范围是(  )
A.[10,+∞)B.[7,+∞)C.[-3,+∞)D.[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.复数z=$\frac{i}{3-i}$的共轭复数为$\overline z$,则$\overline z$在复平面对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=BB1=1,直线B1C与平面ABC成30°的角.
(1)求点C1到平面AB1C的距离;
(2)求二面角B-B1C-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.给出如下列联表(公式见卷首)
患心脏病患其它病合  计
高血压201030
不高血压305080
合  计5060110
P(K2≥10.828)≈0.001,P(K2≥6.635)≈0.010
参照公式,得到的正确结论是(  )
A.有99%以上的把握认为“高血压与患心脏病无关”
B.有99%以上的把握认为“高血压与患心脏病有关”
C.在犯错误的概率不超过0.1%的前提下,认为“高血压与患心脏病无关”
D.在犯错误的概率不超过0.1%的前提下,认为“高血压与患心脏病有关”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.△ABC中,AB=6,AC=4,M为BC的中点,O为△ABC的外心,$\overrightarrow{AO}$•$\overrightarrow{AM}$=(  )
A.$\sqrt{13}$B.13C.5D.2$\sqrt{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知常数a>0,函数f(x)=ln(1+ax)-$\frac{2x}{x+2}$.
(1)若a=$\frac{1}{2}$,判断f(x)的单调性;
(2)若f(x)存在两个极值点x1,x2,且f(x1)+f(x2)>0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\sqrt{4+{x^2}}$,则?x1,x2∈R,x1≠x2,$\frac{{|f({x_1})-f({x_2})|}}{{|{x_1}-{x_2}|}}$的取值范围是(  )
A.[0,+∞)B.[0,1]C.(0,1)D.[0,1)

查看答案和解析>>

同步练习册答案