精英家教网 > 高中数学 > 题目详情
11.定义在R上的函数f(x)满足$f({x+2})=\frac{1}{2}f(x)$,当x∈[0,2)时,$f(x)=\left\{{\begin{array}{l}{\frac{1}{2}-2{x^2},0≤x<1}\\{-{2^{1-|{\frac{3}{2}-x}|}},1≤x<2}\end{array}}\right.$.函数g(x)=lnx-m.若任意的x1∈[-4,-2),均存在${x_2}∈[{{e^{-1}},{e^2}}]$使得不等式f(x1)-g(x2)≥0恒成立,则实数m的取值范围是(  )
A.[10,+∞)B.[7,+∞)C.[-3,+∞)D.[0,+∞)

分析 求出f(x)min=-8,g(x)min=-1-m,根据任意的x1∈[-4,-2),均存在${x_2}∈[{{e^{-1}},{e^2}}]$使得不等式f(x1)-g(x2)≥0恒成立,得出f(x)min≥g(x)min,即可求出实数m的取值范围.

解答 解:由题意,f(x+4)=$\frac{1}{2}$f(x+2)=$\frac{1}{4}$f(x),
设x∈[-4,-2),则x+4∈[0,2),∴f(x)=4f(x+4)=$\left\{\begin{array}{l}{2-8{(x+4)}^{2},-4≤x<-3}\\{-{2}^{3-|-x-\frac{5}{2}|},-3≤x<-2}\end{array}\right.$.
-4≤x<-3时,f(x)∈(-6,2];-3≤x<-2时,f(x)∈[-8,-4$\sqrt{2}$]
∴f(x)min=-8,
∵g(x)=lnx-m,${x_2}∈[{{e^{-1}},{e^2}}]$,
∴g(x)min=-1-m,
∵任意的x1∈[-4,-2),均存在${x_2}∈[{{e^{-1}},{e^2}}]$使得不等式f(x1)-g(x2)≥0恒成立,
∴f(x)min≥g(x)min
∴-8≥-1-m,
∴m≥7.
故选:B.

点评 本题考查恒成立问题,考查函数的最值,正确转化为f(x)min≥g(x)min是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.某省组织部为了了解今年全省高三毕业班准备报考飞行员的学生的体重情况,对该省某校高三毕业班准备报考飞行员的学生的体重进行了统计,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为12.
(1)求该校报考飞行员的总人数;
(2)以这所学校的样本数据来估计全省的总体数据,用频率来估计概率,若从全省报考飞行员的学生中(人数很多)任选3人,设X表示体重超过60kg的学生人数,求X的分布列和均值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设A、B分别是直线y=$\frac{{\sqrt{2}}}{2}$x和y=-$\frac{{\sqrt{2}}}{2}$x上的动点,且|AB|=$\sqrt{2}$,设O为坐标原点,动点P满足$\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{OB}$.
(1)求点P的轨迹方程;
(2)过点($\sqrt{3}$,0)做两条相互垂直的直线l1,l2,直线l1,l2与点P的轨迹相交弦分别为CD、EF,设CD、EF的弦中点分别为M、N,求证:直线MN恒过一个定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.执行如图所示的程序框图,如果输入正整数m,n,满足n≥m,那么输出的p等于(  )
A.$C_n^{m-1}$B.$A_n^{m-1}$C.$C_n^m$D.$A_n^m$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设集合M=|x|$\frac{x}{x-1}$≤0|,N=|x|0<x<2|,则M∩N=(  )
A.{x|0≤x<2 }B.{x|0<x<2}C.{x|0≤x<l}D.{x|0<x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设向量$\overrightarrow{a}$=(1,m),$\overrightarrow{b}$=(m-1,2),且$\overrightarrow{a}$≠$\overrightarrow{b}$,若($\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{a}$,则实数m=(  )
A.2B.1C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列各数中,纯虚数的个数有(  )个.
$2+\sqrt{7}$、$\frac{2}{7}i$、0i、5i+8,$i({1-\sqrt{3}})$、$\frac{1}{1+i}$.
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.复数z=$\frac{2+mi}{1+i}$(m∈R)是纯虚数,则m=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.用5种不同的颜色给图中四个区域涂色,允许同一种颜色使用多次,但相邻区域必须涂不同颜色,不同的涂色方法有(  )
A.180B.240C.160D.320

查看答案和解析>>

同步练习册答案