2£®ÉèA¡¢B·Ö±ðÊÇÖ±Ïßy=$\frac{{\sqrt{2}}}{2}$xºÍy=-$\frac{{\sqrt{2}}}{2}$xÉϵ͝µã£¬ÇÒ|AB|=$\sqrt{2}$£¬ÉèOÎª×ø±êÔ­µã£¬¶¯µãPÂú×ã$\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{OB}$£®
£¨1£©ÇóµãPµÄ¹ì¼£·½³Ì£»
£¨2£©¹ýµã£¨$\sqrt{3}$£¬0£©×öÁ½ÌõÏ໥´¹Ö±µÄÖ±Ïßl1£¬l2£¬Ö±Ïßl1£¬l2ÓëµãPµÄ¹ì¼£ÏཻÏÒ·Ö±ðΪCD¡¢EF£¬ÉèCD¡¢EFµÄÏÒÖеã·Ö±ðΪM¡¢N£¬ÇóÖ¤£ºÖ±ÏßMNºã¹ýÒ»¸ö¶¨µã£®

·ÖÎö £¨1£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬P£¨x£¬y£©£¬ÓÉ$\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{OB}$£¬µÃx=${x}_{1}+{x}_{2}=\sqrt{2}$£¨y1-y2£©£¬y=${y}_{1}+{y}_{2}=\frac{\sqrt{2}}{2}£¨{x}_{1}-{x}_{2}£©$£¬ÓÉ´ËÀûÓÃ|AB|=$\sqrt{2}$£¬ÄÜÇó³öµãPµÄ¹ì¼£·½³Ì£®
£¨2£©ÉèÖ±Ïßl1µÄ·½³ÌΪx-$\sqrt{3}$=ky£¬ÁªÁ¢$\left\{\begin{array}{l}{x-\sqrt{3}=ky}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$£¬µÃ£¨k2+4£©y2+2$\sqrt{3}y-1=0$£¬ÓÉ´ËÀûÓÃΤ´ï¶¨Àí¡¢Ö±ÏßбÂʹ«Ê½¡¢Ö±Ïß·½³Ì£¬½áºÏÒÑÖªÌõ¼þÄÜÖ¤Ã÷Ö±ÏßMNºã¹ýÒ»¶¨µã£®

½â´ð ½â£º£¨1£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬P£¨x£¬y£©£¬
¡ß¶¯µãPÂú×ã$\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{OB}$£¬¡àx=x1+x2£¬y=y1+y2£¬
¡ß${y}_{1}=\frac{\sqrt{2}}{2}{x}_{1}£¬{y}_{2}=-\frac{\sqrt{2}}{2}{x}_{2}$£¬
¡àx=${x}_{1}+{x}_{2}=\sqrt{2}$£¨y1-y2£©£¬y=${y}_{1}+{y}_{2}=\frac{\sqrt{2}}{2}£¨{x}_{1}-{x}_{2}£©$£¬
¡ß|AB|=$\sqrt{£¨{x}_{1}-{x}_{2}£©^{2}+£¨{y}_{1}-{y}_{2}£©^{2}}$=$\sqrt{2}$£¬¡à$\frac{1}{2}{x}^{2}+2{y}^{2}=2$£¬
¡àµãPµÄ¹ì¼£·½³ÌΪ$\frac{{x}^{2}}{4}+{y}^{2}=1$£®
Ö¤Ã÷£º£¨2£©ÉèC£¨x3£¬y3£©£¬D£¨x4£¬y4£©£¬ÉèÖ±Ïßl1µÄ·½³ÌΪx-$\sqrt{3}$=ky£¬
ÁªÁ¢$\left\{\begin{array}{l}{x-\sqrt{3}=ky}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$£¬µÃ£¨k2+4£©y2+2$\sqrt{3}y-1=0$£¬
y3+y4=$\frac{2\sqrt{3}k}{{k}^{2}+4}$£¬x3+x4=$\frac{8\sqrt{3}}{{k}^{2}+4}$£¬
¡àM£¨$\frac{4\sqrt{3}{k}^{2}}{4{k}^{2}+1}$£¬$\frac{\sqrt{3}k}{4{k}^{2}+1}$£©£¬Í¬Àí£¬N£¨$\frac{4\sqrt{3}{k}^{2}}{4{k}^{2}+1}$£¬$\frac{\sqrt{3}k}{4{k}^{2}+1}$£©£¬
¡àÖ±ÏßMNµÄбÂÊ${k}_{MN}=\frac{\frac{\sqrt{3}k}{4{k}^{2}+1}+\frac{\sqrt{3}k}{{k}^{2}+4}}{\frac{4\sqrt{3}{k}^{2}}{4{k}^{2}+1}-\frac{4\sqrt{3}}{{k}^{2}+4}}$=$\frac{5k}{4£¨{k}^{2}-1£©}$£¬
¡àÖ±ÏßMNµÄ·½³ÌΪy+$\frac{\sqrt{3}k}{{k}^{2}+4}$=$\frac{5k}{4£¨{k}^{2}-1£©}$£¨x-$\frac{4\sqrt{3}}{{k}^{2}+4}$£©£¬
ÕûÀí»¯¼ò£¬µÃ$4{k}^{4}y+£¨4\sqrt{3}-5x£©{k}^{2}+12{k}^{2}y+£¨-20x+16\sqrt{3}£©k=0$£¬
¡àx=$\frac{4\sqrt{3}}{5}$£¬y=0£¬
¡àÖ±ÏßMNºã¹ý¶¨µã£¨$\frac{4\sqrt{3}}{5}$£¬0£©£®

µãÆÀ ±¾Ì⿼²éµãµÄ¹ì¼£·½³ÌµÄÇ󷨣¬¿¼²éÖ±Ïߺã¹ýÒ»¶¨µãµÄÖ¤Ã÷£¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâΤ´ï¶¨Àí¡¢Ö±ÏßбÂʹ«Ê½¡¢ÍÖÔ²ÐÔÖʵĺÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÒÑÖªÏòÁ¿$\overrightarrow{OB}$=£¨2£¬0£©£¬$\overrightarrow{OC}$=£¨0£¬2£©£¬$\overrightarrow{CA}$=£¨$\sqrt{3}$cos¦Á£¬$\sqrt{3}$sin¦Á£©£¬Ôò$\overrightarrow{OA}$Óë$\overrightarrow{OB}$¼Ð½ÇµÄ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[$\frac{¦Ð}{3}$£¬$\frac{5¦Ð}{6}$]B£®[0£¬$\frac{¦Ð}{3}$]C£®[$\frac{¦Ð}{6}$£¬$\frac{¦Ð}{2}$]D£®[$\frac{¦Ð}{6}$£¬$\frac{5¦Ð}{6}$]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖªf£¨x£©=|x2-1|+x2+kx£¬Èô¹ØÓÚxµÄ·½³Ìf£¨x£©=0ÔÚ£¨0£¬2£©ÉÏÓÐÁ½¸ö²»ÏàµÈµÄʵ¸ù£¬ÔòkµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨-1£¬0£©B£®£¨-$\frac{7}{2}$£¬+¡Þ£©C£®£¨-¡Þ£¬-$\frac{7}{2}$£©¡È£¨-1£¬+¡Þ£©D£®£¨-$\frac{7}{2}$£¬-1£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑ֪ʵÊýa£¬b£¬Ôò¡°a£¼b¡±ÊÇ¡°a2£¼b2¡±µÄ£¨¡¡¡¡£©
A£®³ä·Ö²»±ØÒªÌõ¼þB£®±ØÒª²»³ä·ÖÌõ¼þ
C£®³äÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÉèÈñ½Ç¦ÁµÄʼ±ßÓëxÖáµÄ·Ç¸º°ëÖáÖØºÏ£¬ÖÕ±ßÓ뵥λԲ½»ÓÚµãP£¨x1£¬y1£©£¬½«ÉäÏßOPÈÆ×ø±êÔ­µãO°´ÄæÊ±Õë·½ÏòÐýת$\frac{¦Ð}{2}$ºóÓ뵥λԲ½»ÓÚµãQ£¨x2£¬y2£©£®¼Çf£¨¦Á£©=y1+y2£®
£¨1£©Çóº¯Êýf£¨¦Á£©µÄÖµÓò£»
£¨2£©Èôf£¨C£©=$\sqrt{2}$£¬Çó¡ÏC£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Éè¸÷Ïî¾ùΪÕýÊýµÄÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬Âú×ã4Sn=an+12-4n-1£¬n¡ÊN*£¬ÇÒa1=1£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Ö¤Ã÷£º¶ÔÒ»ÇÐÕýÕûÊýn£¬ÓÐ$\frac{1}{{{a_1}{a_2}}}+\frac{1}{{{a_2}{a_3}}}+¡­+\frac{1}{{{a_n}{a_{n+1}}}}£¼\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÒÔOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢Ö±½Ç×ø±êϵ£¬Ô²CµÄ¼«×ø±ê·½³ÌΪ$¦Ñ=2\sqrt{2}cos£¨¦È+\frac{¦Ð}{4}£©$£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=t\\ y=-1+2\sqrt{2}t\end{array}\right.$£¨tΪ²ÎÊý£©£¬Ö±ÏßlºÍÔ²C½»ÓÚA£¬BÁ½µã£¬PÊÇÔ²CÉϲ»Í¬ÓÚA£¬BµÄÈÎÒâÒ»µã£®
£¨¢ñ£©ÇóÔ²C¼°lµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©Çó¡÷PABÃæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©Âú×ã$f£¨{x+2}£©=\frac{1}{2}f£¨x£©$£¬µ±x¡Ê[0£¬2£©Ê±£¬$f£¨x£©=\left\{{\begin{array}{l}{\frac{1}{2}-2{x^2}£¬0¡Üx£¼1}\\{-{2^{1-|{\frac{3}{2}-x}|}}£¬1¡Üx£¼2}\end{array}}\right.$£®º¯Êýg£¨x£©=lnx-m£®ÈôÈÎÒâµÄx1¡Ê[-4£¬-2£©£¬¾ù´æÔÚ${x_2}¡Ê[{{e^{-1}}£¬{e^2}}]$ʹµÃ²»µÈʽf£¨x1£©-g£¨x2£©¡Ý0ºã³ÉÁ¢£¬ÔòʵÊýmµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[10£¬+¡Þ£©B£®[7£¬+¡Þ£©C£®[-3£¬+¡Þ£©D£®[0£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®¡÷ABCÖУ¬AB=6£¬AC=4£¬MΪBCµÄÖе㣬OΪ¡÷ABCµÄÍâÐÄ£¬$\overrightarrow{AO}$•$\overrightarrow{AM}$=£¨¡¡¡¡£©
A£®$\sqrt{13}$B£®13C£®5D£®2$\sqrt{13}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸