·ÖÎö £¨1£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬P£¨x£¬y£©£¬ÓÉ$\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{OB}$£¬µÃx=${x}_{1}+{x}_{2}=\sqrt{2}$£¨y1-y2£©£¬y=${y}_{1}+{y}_{2}=\frac{\sqrt{2}}{2}£¨{x}_{1}-{x}_{2}£©$£¬ÓÉ´ËÀûÓÃ|AB|=$\sqrt{2}$£¬ÄÜÇó³öµãPµÄ¹ì¼£·½³Ì£®
£¨2£©ÉèÖ±Ïßl1µÄ·½³ÌΪx-$\sqrt{3}$=ky£¬ÁªÁ¢$\left\{\begin{array}{l}{x-\sqrt{3}=ky}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$£¬µÃ£¨k2+4£©y2+2$\sqrt{3}y-1=0$£¬ÓÉ´ËÀûÓÃΤ´ï¶¨Àí¡¢Ö±ÏßбÂʹ«Ê½¡¢Ö±Ïß·½³Ì£¬½áºÏÒÑÖªÌõ¼þÄÜÖ¤Ã÷Ö±ÏßMNºã¹ýÒ»¶¨µã£®
½â´ð ½â£º£¨1£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬P£¨x£¬y£©£¬
¡ß¶¯µãPÂú×ã$\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{OB}$£¬¡àx=x1+x2£¬y=y1+y2£¬
¡ß${y}_{1}=\frac{\sqrt{2}}{2}{x}_{1}£¬{y}_{2}=-\frac{\sqrt{2}}{2}{x}_{2}$£¬
¡àx=${x}_{1}+{x}_{2}=\sqrt{2}$£¨y1-y2£©£¬y=${y}_{1}+{y}_{2}=\frac{\sqrt{2}}{2}£¨{x}_{1}-{x}_{2}£©$£¬
¡ß|AB|=$\sqrt{£¨{x}_{1}-{x}_{2}£©^{2}+£¨{y}_{1}-{y}_{2}£©^{2}}$=$\sqrt{2}$£¬¡à$\frac{1}{2}{x}^{2}+2{y}^{2}=2$£¬
¡àµãPµÄ¹ì¼£·½³ÌΪ$\frac{{x}^{2}}{4}+{y}^{2}=1$£®
Ö¤Ã÷£º£¨2£©ÉèC£¨x3£¬y3£©£¬D£¨x4£¬y4£©£¬ÉèÖ±Ïßl1µÄ·½³ÌΪx-$\sqrt{3}$=ky£¬
ÁªÁ¢$\left\{\begin{array}{l}{x-\sqrt{3}=ky}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$£¬µÃ£¨k2+4£©y2+2$\sqrt{3}y-1=0$£¬
y3+y4=$\frac{2\sqrt{3}k}{{k}^{2}+4}$£¬x3+x4=$\frac{8\sqrt{3}}{{k}^{2}+4}$£¬
¡àM£¨$\frac{4\sqrt{3}{k}^{2}}{4{k}^{2}+1}$£¬$\frac{\sqrt{3}k}{4{k}^{2}+1}$£©£¬Í¬Àí£¬N£¨$\frac{4\sqrt{3}{k}^{2}}{4{k}^{2}+1}$£¬$\frac{\sqrt{3}k}{4{k}^{2}+1}$£©£¬
¡àÖ±ÏßMNµÄбÂÊ${k}_{MN}=\frac{\frac{\sqrt{3}k}{4{k}^{2}+1}+\frac{\sqrt{3}k}{{k}^{2}+4}}{\frac{4\sqrt{3}{k}^{2}}{4{k}^{2}+1}-\frac{4\sqrt{3}}{{k}^{2}+4}}$=$\frac{5k}{4£¨{k}^{2}-1£©}$£¬
¡àÖ±ÏßMNµÄ·½³ÌΪy+$\frac{\sqrt{3}k}{{k}^{2}+4}$=$\frac{5k}{4£¨{k}^{2}-1£©}$£¨x-$\frac{4\sqrt{3}}{{k}^{2}+4}$£©£¬
ÕûÀí»¯¼ò£¬µÃ$4{k}^{4}y+£¨4\sqrt{3}-5x£©{k}^{2}+12{k}^{2}y+£¨-20x+16\sqrt{3}£©k=0$£¬
¡àx=$\frac{4\sqrt{3}}{5}$£¬y=0£¬
¡àÖ±ÏßMNºã¹ý¶¨µã£¨$\frac{4\sqrt{3}}{5}$£¬0£©£®
µãÆÀ ±¾Ì⿼²éµãµÄ¹ì¼£·½³ÌµÄÇ󷨣¬¿¼²éÖ±Ïߺã¹ýÒ»¶¨µãµÄÖ¤Ã÷£¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâΤ´ï¶¨Àí¡¢Ö±ÏßбÂʹ«Ê½¡¢ÍÖÔ²ÐÔÖʵĺÏÀíÔËÓã®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | [$\frac{¦Ð}{3}$£¬$\frac{5¦Ð}{6}$] | B£® | [0£¬$\frac{¦Ð}{3}$] | C£® | [$\frac{¦Ð}{6}$£¬$\frac{¦Ð}{2}$] | D£® | [$\frac{¦Ð}{6}$£¬$\frac{5¦Ð}{6}$] |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨-1£¬0£© | B£® | £¨-$\frac{7}{2}$£¬+¡Þ£© | C£® | £¨-¡Þ£¬-$\frac{7}{2}$£©¡È£¨-1£¬+¡Þ£© | D£® | £¨-$\frac{7}{2}$£¬-1£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ³ä·Ö²»±ØÒªÌõ¼þ | B£® | ±ØÒª²»³ä·ÖÌõ¼þ | ||
| C£® | ³äÒªÌõ¼þ | D£® | ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | [10£¬+¡Þ£© | B£® | [7£¬+¡Þ£© | C£® | [-3£¬+¡Þ£© | D£® | [0£¬+¡Þ£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\sqrt{13}$ | B£® | 13 | C£® | 5 | D£® | 2$\sqrt{13}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com