分析 (1)由已知数列递推式可得an+1=an+2(n≥2),求得a2,验证a2-a1=2,说明数列{an}是等差数列,则通项公式可求;
(2)把数列的通项公式代入不等式左边,然后利用裂项相消法证得答案.
解答 (1)解:由4Sn=an+12-4n-1,
得$4{S}_{n-1}={{a}_{n}}^{2}-4(n-1)-1$,两式作差得$4{a}_{n}={{a}_{n+1}}^{2}-{{a}_{n}}^{2}-4$,
则${{a}_{n+1}}^{2}={{a}_{n}}^{2}+4{a}_{n}+4=({a}_{n}+2)^{2}$,∵an>0,
∴an+1=an+2(n≥2),
由a1=1,4Sn=an+12-4n-1,得a2=3,满足a2-a1=2,
∴数列{an}是以1为首项,以2为公差的等差数列,则an=1+2(n-1)=2n-1;
(2)证明:$\frac{1}{{a}_{1}{a}_{2}}+\frac{1}{{a}_{2}{a}_{3}}+…+\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{1×3}+\frac{1}{3×5}+…+\frac{1}{(2n-1)(2n+1)}$
=$\frac{1}{2}$($1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+…+\frac{1}{2n-1}-\frac{1}{2n+1}$)=$\frac{1}{2}(1-\frac{1}{2n+1})<\frac{1}{2}$.
点评 本题考查数列递推式,考查了等差关系的确定,训练了裂项相消法求数列的前n项和,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{7}$ | B. | $\frac{2}{11}$ | C. | 2 | D. | $\frac{5}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{6}{5}$ | B. | $\frac{6}{5}$ | C. | -$\frac{8}{5}$ | D. | $\frac{8}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,3) | B. | [-1,3] | C. | (0,3) | D. | (-∞,-1)∪(3,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 几何体 | 代数题 | 总计 | |
| 男同学 | 22 | 8 | 30 |
| 女同学 | 8 | 12 | 20 |
| 总计 | 30 | 20 | 50 |
| P(k2≥k) | 0.10 | 0.050 | 0.025 | 0.010 | 0.001 |
| k | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $C_n^{m-1}$ | B. | $A_n^{m-1}$ | C. | $C_n^m$ | D. | $A_n^m$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 1 | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com