精英家教网 > 高中数学 > 题目详情
13.直线x-y-k=0与圆(x-1)2+y2=2有两个不同交点的一个充分不必要条件可以是(  )
A.(-1,3)B.[-1,3]C.(0,3)D.(-∞,-1)∪(3,+∞)

分析 直线x-y-k=0与圆(x-1)2+y2=2有两个不同交点充要条件为:$\frac{|1-k|}{\sqrt{2}}$$<\sqrt{2}$,解出即可判断出结论.

解答 解:直线x-y-k=0与圆(x-1)2+y2=2有两个不同交点充要条件为:$\frac{|1-k|}{\sqrt{2}}$$<\sqrt{2}$,
解得:-1<k<3.
∴直线x-y-k=0与圆(x-1)2+y2=2有两个不同交点的一个充分不必要条件可以是(0,3),
故选:C.

点评 本题考查了直线与圆的位置关系、点到直线的距离公式、简易逻辑的判断方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.在△ABC中,角A,B,C对边分别是a,b,c.已知a=3,c=2,cosB=$\frac{1}{4}$.
(Ⅰ)求sinA;
(Ⅱ)设f(x)=bsin2x+$\sqrt{30}$sinxcosx(x∈R),求f(x)的最小正周期和对称轴的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知△ABC中,内角A、B、C所对的边分别是a,b,c,且a2-ab+b2=c2
(1)求角C;
(2)若△ABC为锐角三角形,求$\sqrt{3}$sinBcosB+cos2B的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.工人月工资y(元)依劳动生产率x(千元)变化的回归方程为$\widehat{y}$=50+60x,下列判断正确的是(  )
A.劳动生产率为1 000元时,工资为110元
B.劳动生产率提高1 000元,则工资提高60元
C.劳动生产率提高1 000元,则工资提高110元
D.当月工资为210元时,劳动生产率为1 500元

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知实数a,b,则“a<b”是“a2<b2”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:
2$\sqrt{\frac{2}{3}}$=$\sqrt{2\frac{2}{3}}$,3$\sqrt{\frac{3}{8}}$=$\sqrt{3\frac{3}{8}}$,4$\sqrt{\frac{4}{15}}$=$\sqrt{4\frac{4}{15}}$,5$\sqrt{\frac{5}{24}}$=$\sqrt{5\frac{5}{24}}$
则按照以上规律,若8$\sqrt{\frac{8}{n}}$=$\sqrt{8\frac{8}{n}}$具有“穿墙术”,则n=(  )
A.7B.35C.48D.63

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设各项均为正数的数列{an}的前n项和为Sn,满足4Sn=an+12-4n-1,n∈N*,且a1=1.
(1)求数列{an}的通项公式;
(2)证明:对一切正整数n,有$\frac{1}{{{a_1}{a_2}}}+\frac{1}{{{a_2}{a_3}}}+…+\frac{1}{{{a_n}{a_{n+1}}}}<\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设m∈R,实数x,y满足$\left\{\begin{array}{l}x≥m\\ 2x-3y+6≥0\\ 3x-2y-6≤0\end{array}\right.$,若|x+2y|≤18,则实数m的取值范围是[-3,6].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.给出如下列联表(公式见卷首)
患心脏病患其它病合  计
高血压201030
不高血压305080
合  计5060110
P(K2≥10.828)≈0.001,P(K2≥6.635)≈0.010
参照公式,得到的正确结论是(  )
A.有99%以上的把握认为“高血压与患心脏病无关”
B.有99%以上的把握认为“高血压与患心脏病有关”
C.在犯错误的概率不超过0.1%的前提下,认为“高血压与患心脏病无关”
D.在犯错误的概率不超过0.1%的前提下,认为“高血压与患心脏病有关”

查看答案和解析>>

同步练习册答案