精英家教网 > 高中数学 > 题目详情
4.设m∈R,实数x,y满足$\left\{\begin{array}{l}x≥m\\ 2x-3y+6≥0\\ 3x-2y-6≤0\end{array}\right.$,若|x+2y|≤18,则实数m的取值范围是[-3,6].

分析 由题意作平面区域,从而可得A(6,6),B(m,$\frac{3m}{2}$-3),从而可得m+2($\frac{3m}{2}$-3)≥-18,从而求得.

解答 解:由题意作不等式组$\left\{\begin{array}{l}x≥m\\ 2x-3y+6≥0\\ 3x-2y-6≤0\end{array}\right.$表示的平面区域如下,

结合图象可知,A(6,6),B(m,$\frac{3m}{2}$-3),
易知m≤6,
且m+2($\frac{3m}{2}$-3)≥-18,
解得m≥-3,
故-3≤m≤6.
故答案为:[-3,6].

点评 本题考查了线性规划,同时考查了学生的作图能力及数形结合的思想方法的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知数列{an},定义其平均数是Vn=$\frac{{{a_1}+{a_2}+…+{a_n}}}{n}$(n≥N*))
(1)若数列{an}的平均数Vn=2n-1,求an
(2)若数列{an}的首项为1,公比为2的等比数列,其平均数为Vn,Vn>t-$\frac{1}{n}$对一切n∈N*恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.直线x-y-k=0与圆(x-1)2+y2=2有两个不同交点的一个充分不必要条件可以是(  )
A.(-1,3)B.[-1,3]C.(0,3)D.(-∞,-1)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某小组为了研究中学生的视觉和空间能力是否与性别有关,从学校各年级中按分层抽样的方法抽取50名同学(男生30人,女生20人).给每位同学难度一致的几何题和代数题各一道,让他们自由选择一道题进行解答.50名同学选题情况如下表:
几何体代数题总计
男同学22830
女同学81220
总计302050
(Ⅰ)能否据此判断有97.5%的把握认为视觉和空间能力与性别有关?
(Ⅱ)现从选择做几何题的8名女生中任意抽取两人对她们的答题情况进行全程研究,记甲、乙两女生被抽到的人数为X,求X的分布列及数学期望E(X).
参考公式和数据:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
P(k2≥k)0.100.0500.0250.0100.001
k2.7063.8415.0246.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.执行如图所示的程序框图,如果输入正整数m,n,满足n≥m,那么输出的p等于(  )
A.$C_n^{m-1}$B.$A_n^{m-1}$C.$C_n^m$D.$A_n^m$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知以A为圆心的圆(x-2)2+y2=64上有一个动点M,B(-2,0),线段BM的垂直平分线交AM于点P,点P的轨迹为E.
(Ⅰ)求轨迹E的方程;
(Ⅱ)过A点作两条相互垂直的直线l1,l2分别交曲线E于D,E,F,G四个点,求|DE|+|FG|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设向量$\overrightarrow{a}$=(1,m),$\overrightarrow{b}$=(m-1,2),且$\overrightarrow{a}$≠$\overrightarrow{b}$,若($\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{a}$,则实数m=(  )
A.2B.1C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设函数f(x)=n-1,x∈[n,n+1],n∈N,则函数g(x)=f(x)-log2x的零点个数是(  )
A.1B.2C.3D.无数个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知f1(x)=cosx,f2(x)=f1′(x),f3(x)=f2′(x),…,fn+1(x)=fn′(x),则f2016(x)=(  )
A.sinxB.-sinxC.cosxD.-cosx

查看答案和解析>>

同步练习册答案