分析 由题意作平面区域,从而可得A(6,6),B(m,$\frac{3m}{2}$-3),从而可得m+2($\frac{3m}{2}$-3)≥-18,从而求得.
解答 解:由题意作不等式组$\left\{\begin{array}{l}x≥m\\ 2x-3y+6≥0\\ 3x-2y-6≤0\end{array}\right.$表示的平面区域如下,
,
结合图象可知,A(6,6),B(m,$\frac{3m}{2}$-3),
易知m≤6,
且m+2($\frac{3m}{2}$-3)≥-18,
解得m≥-3,
故-3≤m≤6.
故答案为:[-3,6].
点评 本题考查了线性规划,同时考查了学生的作图能力及数形结合的思想方法的应用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,3) | B. | [-1,3] | C. | (0,3) | D. | (-∞,-1)∪(3,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 几何体 | 代数题 | 总计 | |
| 男同学 | 22 | 8 | 30 |
| 女同学 | 8 | 12 | 20 |
| 总计 | 30 | 20 | 50 |
| P(k2≥k) | 0.10 | 0.050 | 0.025 | 0.010 | 0.001 |
| k | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $C_n^{m-1}$ | B. | $A_n^{m-1}$ | C. | $C_n^m$ | D. | $A_n^m$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 1 | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | sinx | B. | -sinx | C. | cosx | D. | -cosx |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com