精英家教网 > 高中数学 > 题目详情
16.设向量$\overrightarrow{a}$=(1,m),$\overrightarrow{b}$=(m-1,2),且$\overrightarrow{a}$≠$\overrightarrow{b}$,若($\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{a}$,则实数m=(  )
A.2B.1C.$\frac{1}{3}$D.$\frac{1}{2}$

分析 根据向量垂直于向量数量积的关系建立方程进行求解即可.

解答 解:∵($\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{a}$,
∴($\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{a}$=0,
即$\overrightarrow{a}$2-$\overrightarrow{b}$•$\overrightarrow{a}$=0,
即1+m2-(m-1+2m)=0,
即m2-3m+2=0,
得m=1或m=2,
当m=1时,量$\overrightarrow{a}$=(1,1),$\overrightarrow{b}$=(0,2),满足$\overrightarrow{a}$≠$\overrightarrow{b}$,
当m=2时,量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(1,2),不满足$\overrightarrow{a}$≠$\overrightarrow{b}$,
综上m=1,
故选:B.

点评 本题主要考查向量数量积的应用,根据向量数量积的坐标公式以及向量垂直于向量数量积的关系建立方程是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知△ABC中,内角A、B、C所对的边分别是a,b,c,且a2-ab+b2=c2
(1)求角C;
(2)若△ABC为锐角三角形,求$\sqrt{3}$sinBcosB+cos2B的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设各项均为正数的数列{an}的前n项和为Sn,满足4Sn=an+12-4n-1,n∈N*,且a1=1.
(1)求数列{an}的通项公式;
(2)证明:对一切正整数n,有$\frac{1}{{{a_1}{a_2}}}+\frac{1}{{{a_2}{a_3}}}+…+\frac{1}{{{a_n}{a_{n+1}}}}<\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设m∈R,实数x,y满足$\left\{\begin{array}{l}x≥m\\ 2x-3y+6≥0\\ 3x-2y-6≤0\end{array}\right.$,若|x+2y|≤18,则实数m的取值范围是[-3,6].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.定义在R上的函数f(x)满足$f({x+2})=\frac{1}{2}f(x)$,当x∈[0,2)时,$f(x)=\left\{{\begin{array}{l}{\frac{1}{2}-2{x^2},0≤x<1}\\{-{2^{1-|{\frac{3}{2}-x}|}},1≤x<2}\end{array}}\right.$.函数g(x)=lnx-m.若任意的x1∈[-4,-2),均存在${x_2}∈[{{e^{-1}},{e^2}}]$使得不等式f(x1)-g(x2)≥0恒成立,则实数m的取值范围是(  )
A.[10,+∞)B.[7,+∞)C.[-3,+∞)D.[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图,正三棱柱ABC-A1B1C1(底面是正三角形,侧棱垂直底面)的各条棱长均相等,D为AA1的中点.M、N分别是BB1、CC1上的动点(含端点),且满足BM=C1N.
当M、N运动时,下列结论中正确的是①②④(填上所有正确命题的序号).
①平面DMN⊥平面BCC1B1
②三棱锥A1-DMN的体积为定值;
③△DMN可能为直角三角形;
④平面DMN与平面ABC所成的锐二面角范围为$(0,\frac{π}{4}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.复数z=$\frac{i}{3-i}$的共轭复数为$\overline z$,则$\overline z$在复平面对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.给出如下列联表(公式见卷首)
患心脏病患其它病合  计
高血压201030
不高血压305080
合  计5060110
P(K2≥10.828)≈0.001,P(K2≥6.635)≈0.010
参照公式,得到的正确结论是(  )
A.有99%以上的把握认为“高血压与患心脏病无关”
B.有99%以上的把握认为“高血压与患心脏病有关”
C.在犯错误的概率不超过0.1%的前提下,认为“高血压与患心脏病无关”
D.在犯错误的概率不超过0.1%的前提下,认为“高血压与患心脏病有关”

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若f(x)=$\left\{\begin{array}{l}{-\frac{a}{x},x≥1}\\{ax+3,x<1}\end{array}\right.$是R上的单调函数,则实数a的取值范围为[-$\frac{3}{2}$,0).

查看答案和解析>>

同步练习册答案