精英家教网 > 高中数学 > 题目详情
4.已知△ABC中,内角A、B、C所对的边分别是a,b,c,且a2-ab+b2=c2
(1)求角C;
(2)若△ABC为锐角三角形,求$\sqrt{3}$sinBcosB+cos2B的取值范围.

分析 (1)利用余弦定理计算cosC即可得出C;
(2)先求出B的范围,再利用二倍角公式与和角公式化简$\sqrt{3}$sinBcosB+cos2B,根据正弦函数的性质得出范围.

解答 解:(1)∵a2-ab+b2=c2,∴a2+b2-c2=ab,
∴cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{1}{2}$,∴C=$\frac{π}{3}$.
(2)$\sqrt{3}$sinBcosB+cos2B=$\frac{\sqrt{3}}{2}$sin2B+$\frac{1}{2}$cos2B$+\frac{1}{2}$=sin(2B+$\frac{π}{6}$)+$\frac{1}{2}$,
∵△ABC为锐角三角形,
∴$\left\{\begin{array}{l}{0<B<\frac{π}{2}}\\{0<\frac{2π}{3}-B<\frac{π}{2}}\end{array}\right.$,∴$\frac{π}{6}$<B<$\frac{π}{2}$,
∴$\frac{π}{2}$<2B+$\frac{π}{6}$<$\frac{7π}{6}$,
∴0<sin(2B+$\frac{π}{6}$)+$\frac{1}{2}$<$\frac{3}{2}$.
即$\sqrt{3}$sinBcosB+cos2B的取值范围是(0,$\frac{3}{2}$).

点评 本题考查了余弦定理,三角函数的恒等变换,正弦函数的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.如图,透明塑料制成的长方体容器ABCD-A1B1C1D1 内灌进一些水,固定容器底面一边BC于地面上,再将容器倾斜.随着倾斜度的不同,有下面五个命题:
①有水的部分始终呈棱柱形;
②没有水的部分始终呈棱柱形;
③水面EFGH所在四边形的面积为定值;
④棱A1D1 始终与水面所在平面平行;
⑤当容器倾斜如图3所示时,BE•BF是定值.
其中正确命题的个数为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若tanα=$\frac{1}{2}$,tan(α+β)=$\frac{3}{4}$,则tanβ=(  )
A.$\frac{1}{7}$B.$\frac{2}{11}$C.2D.$\frac{5}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an},定义其平均数是Vn=$\frac{{{a_1}+{a_2}+…+{a_n}}}{n}$(n≥N*))
(1)若数列{an}的平均数Vn=2n-1,求an
(2)若数列{an}的首项为1,公比为2的等比数列,其平均数为Vn,Vn>t-$\frac{1}{n}$对一切n∈N*恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某省组织部为了了解今年全省高三毕业班准备报考飞行员的学生的体重情况,对该省某校高三毕业班准备报考飞行员的学生的体重进行了统计,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为12.
(1)求该校报考飞行员的总人数;
(2)以这所学校的样本数据来估计全省的总体数据,用频率来估计概率,若从全省报考飞行员的学生中(人数很多)任选3人,设X表示体重超过60kg的学生人数,求X的分布列和均值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知x,y满足$\left\{\begin{array}{l}{y≥x}\\{x+y≤2}\\{x≥\frac{1}{2}}\end{array}\right.$,则z=2x-y的最大值等于1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知cosα=-$\frac{4}{5}$,α为第二象限角,则-$\frac{sin2α}{cosα}$=(  )
A.-$\frac{6}{5}$B.$\frac{6}{5}$C.-$\frac{8}{5}$D.$\frac{8}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.直线x-y-k=0与圆(x-1)2+y2=2有两个不同交点的一个充分不必要条件可以是(  )
A.(-1,3)B.[-1,3]C.(0,3)D.(-∞,-1)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设向量$\overrightarrow{a}$=(1,m),$\overrightarrow{b}$=(m-1,2),且$\overrightarrow{a}$≠$\overrightarrow{b}$,若($\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{a}$,则实数m=(  )
A.2B.1C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案