精英家教网 > 高中数学 > 题目详情
8.已知实数a,b,则“a<b”是“a2<b2”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 由a2<b2,解得:|a|<|b|,与a<b,相互无法推出.即可判断出关系.

解答 解:由a2<b2,解得:|a|<|b|,与a<b,相互无法推出.
因此“a<b”是“a2<b2”的既不充分也不必要条件.
故选:D.

点评 本题考查了不等式的解法、简易逻辑的判断方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知数列{an}满足a1=$\frac{1}{4}$,4an+1(1-an)=1.
(1)设bn=$\frac{1}{2{a}_{n}-1}$,求证数列{bn}为等差数列;
(2)求证$\frac{{a}_{2}}{{a}_{1}}+\frac{{a}_{3}}{{a}_{2}}+\frac{{a}_{4}}{{a}_{3}}$+…+$\frac{{a}_{n+1}}{{a}_{n}}$<n+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某省组织部为了了解今年全省高三毕业班准备报考飞行员的学生的体重情况,对该省某校高三毕业班准备报考飞行员的学生的体重进行了统计,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为12.
(1)求该校报考飞行员的总人数;
(2)以这所学校的样本数据来估计全省的总体数据,用频率来估计概率,若从全省报考飞行员的学生中(人数很多)任选3人,设X表示体重超过60kg的学生人数,求X的分布列和均值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知cosα=-$\frac{4}{5}$,α为第二象限角,则-$\frac{sin2α}{cosα}$=(  )
A.-$\frac{6}{5}$B.$\frac{6}{5}$C.-$\frac{8}{5}$D.$\frac{8}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F2(3,0),离心率为e.
(1)若e=$\frac{\sqrt{3}}{2}$,求椭圆的方程;
(2)若直线与椭圆y=kx交于A,B两点,M,N分别为线段AF2,BF2 中点,若坐标原点O在以MN为直径的圆上,且$\frac{\sqrt{2}}{2}$<e<$\frac{\sqrt{3}}{2}$,求k2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.直线x-y-k=0与圆(x-1)2+y2=2有两个不同交点的一个充分不必要条件可以是(  )
A.(-1,3)B.[-1,3]C.(0,3)D.(-∞,-1)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设A、B分别是直线y=$\frac{{\sqrt{2}}}{2}$x和y=-$\frac{{\sqrt{2}}}{2}$x上的动点,且|AB|=$\sqrt{2}$,设O为坐标原点,动点P满足$\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{OB}$.
(1)求点P的轨迹方程;
(2)过点($\sqrt{3}$,0)做两条相互垂直的直线l1,l2,直线l1,l2与点P的轨迹相交弦分别为CD、EF,设CD、EF的弦中点分别为M、N,求证:直线MN恒过一个定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.执行如图所示的程序框图,如果输入正整数m,n,满足n≥m,那么输出的p等于(  )
A.$C_n^{m-1}$B.$A_n^{m-1}$C.$C_n^m$D.$A_n^m$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.复数z=$\frac{2+mi}{1+i}$(m∈R)是纯虚数,则m=-2.

查看答案和解析>>

同步练习册答案